1887

Abstract

A Gram-stain-negative, aerobic, non-motile, rod-shaped bacterial strain, designated CAU 1488, was isolated from tidal flat sediment, and its taxonomic position was investigated using a polyphasic approach. The organism grew optimally at a temperature of 30 °C, at pH 7.0–7.5 and in the presence of 0–6 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain CAU 1488 forms a lineage distinct from ZGT 118 (97.9 %), ZH17 (97.6 %), ITI 1157 (97.5 %), DSS-3 (97.1 %), ZGT108 (97.0 %), CC-GIMAT-2 (96.8 %), CECT 4292 (96.7 %) and J95 (95.9 %). Genome sequencing revealed that CAU 1488 had a genome size of 4.23 Mbp and a G+C content of 63.2 mol%. Overall genome related indexes including average nucleotide identity and digital DNA–DNA hybridization values were 75.0–83.0 % and 26.2 %, which are below the cutoffs of 95 and 70 %, respectively, indicating that strain CAU 1488 represents a distinct species from the members of the genus . The predominant quinone was ubiquinone-10 (Q-10). The major fatty acids were summed feature 8 (C ω7ω6; 60.7 %) and its polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine and unidentified aminolipids. On the basis of phenotypic, chemotaxonomic and genomic data, strain CAU 1488 constitutes a novel species of the genus , for which the name sp. nov. is proposed. The type strain is CAU 1488 (=KCTC 62996=NBRC 113693).

Funding
This study was supported by the:
  • Wonyong Kim , Chung-Ang University , (Award 2018)
  • Wonyong Kim , National Institute of Biological Resources , (Award oo)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004128
2020-03-20
2020-06-02
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/5/3055.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004128&mimeType=html&fmt=ahah

References

  1. Uchino Y, Hirata A, Yokota A, Sugiyama J. Reclassification of marine Agrobacterium species: Proposals of Stappia stellulata gen. nov., comb. nov., Stappia aggregata sp. nov., nom. rev., Ruegeria atlantica gen. nov., comb. nov., Ruegeria gelatinovora comb. nov., Ruegeria algicola comb. nov., and Ahrensia kieliense gen. nov., sp. nov., nom. rev. J Gen Appl Microbiol 1998; 44:201–210 [CrossRef]
    [Google Scholar]
  2. Park S, Yoon J-H. Ruegeria arenilitoris sp. nov., isolated from the seashore sand around a seaweed farm. Antonie van Leeuwenhoek 2012; 102:581–589 [CrossRef]
    [Google Scholar]
  3. Rüger HJ, Höfle MG. Marine star-shaped-aggregate-forming bacteria: Agrobacterium atlanticum sp. nov.; Agrobacterium meteori sp. nov.; Agrobacterium ferrugineum sp. nov., nom. rev.; Agrobacterium gelatinovorum sp. nov., nom. rev.; and Agrobacterium stellulatum sp. nov., nom. rev. Int J Syst Bacteriol 1992; 42:133–143 [CrossRef]
    [Google Scholar]
  4. Lee J, Whon TW, Shin N-R, Roh SW, Kim J et al. Ruegeria conchae sp. nov., isolated from the ark clam Scapharca broughtonii . Int J Syst Evol Microbiol 2012; 62:2851–2857 [CrossRef]
    [Google Scholar]
  5. Arahal DR, Lucena T, Rodrigo-Torres L, Pujalte MJ. Ruegeria denitrificans sp. nov., a marine bacterium in the family Rhodobacteraceae with the potential ability for cyanophycin synthesis. Int J Syst Evol Microbiol 2018; 68:2515–2522 [CrossRef]
    [Google Scholar]
  6. KH O, Jung YT, TK O, Yoon JH. Ruegeria faecimaris sp. nov., isolated from a tidal-flat sediment. Int J Syst Evol Microbiol 2011; 61:1182–1188
    [Google Scholar]
  7. Kim Y-O, Park S, Nam B-H, Kang S-J, Hur YB et al. Ruegeria halocynthiae sp. nov., isolated from the sea squirt Halocynthia roretzi . Int J Syst Evol Microbiol 2012; 62:925–930 [CrossRef]
    [Google Scholar]
  8. Kampfer P, Arun AB, Rekha PD, Busse H-J, Young C-C et al. Ruegeria intermedia sp. nov., a moderately thermophilic bacterium isolated from a coastal hot spring. Int J Syst Evol Microbiol 2013; 63:2538–2544 [CrossRef]
    [Google Scholar]
  9. Zhang L, Wang K-L, Yin Q, Liang J-Y, Xu Y. Ruegeria kandeliae sp. nov., isolated from the rhizosphere soil of a mangrove plant Kandelia candel . Int J Syst Evol Microbiol 2018; 68:2653–2658 [CrossRef]
    [Google Scholar]
  10. Petursdottir SK, Kristjansson JK. Silicibacter lacuscaerulensis gen. nov., sp. nov., a mesophilic moderately halophilic bacterium characteristic of the blue lagoon geothermal lake in Iceland. Extremophiles 1997; 1:94–99 [CrossRef]
    [Google Scholar]
  11. Wirth JS, Whitman WB. Phylogenomic analyses of a clade within the roseobacter group suggest taxonomic reassignments of species of the genera Aestuariivita, Citreicella, Loktanella, Nautella, Pelagibaca, Ruegeria, Thalassobius, Thiobacimonas and Tropicibacter, and the proposal of six novel genera. Int J Syst Evol Microbiol 2018; 68:2393–2411 [CrossRef]
    [Google Scholar]
  12. Huo Y-Y, Xu X-W, Li X, Liu C, Cui H-L et al. Ruegeria marina sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 2011; 61:347–350 [CrossRef]
    [Google Scholar]
  13. Zhang G, Haroon MF, Zhang R, Dong X, Wang D et al. Ruegeria profundi sp. nov. and Ruegeria marisrubri sp. nov., isolated from the brine–seawater interface at Erba deep in the red sea. Int J Syst Evol Microbiol 2017; 67:4624–4631 [CrossRef]
    [Google Scholar]
  14. Kim Y-O, Park S, Nam B-H, Jung Y-T, Kim D-G et al. Ruegeria meonggei sp. nov., an alphaproteobacterium isolated from ascidian Halocynthia roretzi . Antonie van Leeuwenhoek 2014; 105:551–558 [CrossRef]
    [Google Scholar]
  15. Gonzalez JM et al. Silicibacter pomeroyi sp. nov. and Roseovarius nubinhibens sp. nov., dimethylsulfoniopropionate-demethylating bacteria from marine environments. Int J Syst Evol Microbiol 2003; 53:1261–1269 [CrossRef]
    [Google Scholar]
  16. Yi H, Lim YW, Chun J. Taxonomic evaluation of the genera Ruegeria and Silicibacter: a proposal to transfer the genus Silicibacter Petursdottir and Kristjansson 1999 to the genus Ruegeria Uchino et al. 1999. Int J Syst Evol Microbiol 2007; 57:815–819 [CrossRef]
    [Google Scholar]
  17. Kim J, Kim D-Y, Yang K-H, Kim S, Lee S-S. Ruegeria lutea sp. nov., isolated from marine sediment, Masan Bay, South Korea. Int J Syst Evol Microbiol 2019; 69:2854–2861 [CrossRef]
    [Google Scholar]
  18. Kim J-H, Kanjanasuntree R, Kim D-H, Lee J-S, Sukhoom A et al. Arenibacillus arenosus gen. nov., sp. nov., a member of the family Rhodobacteraceae isolated from sea sand. Int J Syst Evol Microbiol 2019; 69:153–158 [CrossRef]
    [Google Scholar]
  19. In: Lane D. 16S/23S rRNA sequencing. Nucleic Acid Techniques in Bacterial Systematics 1991
    [Google Scholar]
  20. Nam S-W, Kim W, Chun J, Goodfellow M. Tsukamurella pseudospumae sp. nov., a novel actinomycete isolated from activated sludge foam Int J Syst Evol . Microbiol 2004; 54:1209–1212
    [Google Scholar]
  21. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA et al. Clustal W and Clustal X version 2.0. Bioinformatics 2009; 47:2948
    [Google Scholar]
  22. Jukes TH, Cantor CR. Evolution of protein molecules. Mammalian protein metabolism 1969; 3:132
    [Google Scholar]
  23. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425
    [Google Scholar]
  24. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [CrossRef]
    [Google Scholar]
  25. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [CrossRef]
    [Google Scholar]
  26. Felsenstein J. PHYLIP – phylogeny inference package (version3.2). Cladistics 1989; 5:164–166
    [Google Scholar]
  27. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [CrossRef]
    [Google Scholar]
  28. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [CrossRef]
    [Google Scholar]
  29. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [CrossRef]
    [Google Scholar]
  30. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [CrossRef]
    [Google Scholar]
  31. Goris J, Klappenbach JA, Vandamme P, Coenye T, Konstantinidis KT et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [CrossRef]
    [Google Scholar]
  32. Nicholson WL, Setlow P. Sporulation, germination and outgrowth. In Harwood CR, MethoCutting SM. (editors) Molecular Biological Methods for Bacillus Chichester: Wiley; 1990 pp 391–450
    [Google Scholar]
  33. Conn HJ, Bartholomew JW, Jennison MW. Staining methods. Manual of Microbial Method 195730–36
    [Google Scholar]
  34. Wolfe AJ, Berg HC. Migration of bacteria in semisolid agar. Proc Natl Acad Sci U S A 1989; 86:6973–6977 [CrossRef]
    [Google Scholar]
  35. Rodríguez-Valera F, Ruiz-Berraquero F, Ramos-Cormenzana A. Characteristics of the heterotrophic bacterial populations in hypersaline environments of different salt concentrations. Microb Ecol 1981; 7:235–243 [CrossRef]
    [Google Scholar]
  36. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp 607–654
    [Google Scholar]
  37. Komagata K, Suzuki K. Lipids and cell-wall analysis in bacterial Systematics. Methods Microbiol 1987; 19:161–207
    [Google Scholar]
  38. Kanjanasuntree R, Kim J-H, Yoon J-H, Sukhoom A, Kantachote D et al. Arenimonas halophila sp. nov., isolated from soil. Int J Syst Evol Microbiol 2018; 68:2188–2193 [CrossRef]
    [Google Scholar]
  39. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  40. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [CrossRef]
    [Google Scholar]
  41. Thongphrom C, Kim J-H, Bora N, Kim W. Tessaracoccus arenae sp. nov., isolated from sea sand. Int J Syst Evol Microbiol 2017; 67:2008–2013 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004128
Loading
/content/journal/ijsem/10.1099/ijsem.0.004128
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error