1887

Abstract

Five Gram-reaction-negative, aerobic, motile with one to three polar flagella, rod-shaped bacterial strains, MAFF 212408, MAFF 212409, MAFF 212410, MAFF 301498 and MAFF 730085, were isolated from diseased Welsh onion ( L.) in Japan. Analysis of their 16S rRNA gene sequences showed that they belong to the genus with the highest similarity to 14-3 (99.86 %), CMS 35 (99.79 %) and DSM 14936 (99.72%). The genomic DNA G+C content was 59.5 mol% and the major fatty acids (>5 %) were summed feature 3, C, summed feature 8 and C 2-OH. Multilocus sequence analysis using the , and gene sequences and phylogenomic analysis based on the 90 core genes demonstrated that the strains are members of the subgroup, but are distant from all closely related species. Average nucleotide identity (ANI) and digital DNA–DNA hybridization (dDDH) analysis confirmed low genomic relatedness to their closest relatives [below the recommended thresholds of 95 % (ANI) and 70 % (dDDH) for prokaryotic species delineation]. The strains were characterized by using API 20NE and Biolog GEN III tests, and inoculation tests in Welsh onion, showing that they are phenotypically differentiated from their closest relatives. Based on the genetic and phenotypic evidence, the strains should be classified as representing a novel species, for which the name sp. nov. is proposed. The type strain is MAFF 212408 (=ICMP 23530).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004123
2020-03-31
2020-06-04
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/5/3018.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004123&mimeType=html&fmt=ahah

References

  1. Palleroni NJ. Pseudomonas. In Brenner DJ, Krieg NR, Staley JT. (editors) Bergey’s Manual of Systematic Bacteriology 2, 2nd ed. Boston: Springer; 2005 pp 323–379
    [Google Scholar]
  2. Parte AC. LPSN - List of prokaryotic names with standing in nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol 2018; 68:1825–1829 [CrossRef][PubMed]
    [Google Scholar]
  3. Mulet M, Lalucat J, García-Valdés E. DNA sequence-based analysis of the Pseudomonas species. Environ Microbiol 2010; 12:1513–1530 [CrossRef][PubMed]
    [Google Scholar]
  4. Mulet M, Gomila M, Scotta C, Sánchez D, Lalucat J et al. Concordance between whole-cell matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry and multilocus sequence analysis approaches in species discrimination within the genus Pseudomonas . Syst Appl Microbiol 2012; 35:455–464 [CrossRef][PubMed]
    [Google Scholar]
  5. Gomila M, Peña A, Mulet M, Lalucat J, García-Valdés E. Phylogenomics and systematics in Pseudomonas . Front Microbiol 2015; 6:214 [CrossRef][PubMed]
    [Google Scholar]
  6. Peix A, Ramírez-Bahena M-H, Velázquez E. The current status on the taxonomy of Pseudomonas revisited: An update. Infect Genet Evol 2018; 57:106–116 [CrossRef][PubMed]
    [Google Scholar]
  7. Gardan L, Bella P, Meyer J-M, Christen R, Rott P et al. Pseudomonas salomonii sp. nov., pathogenic on garlic, and Pseudomonas palleroniana sp. nov., isolated from rice. Int J Syst Evol Microbiol 2002; 52:2065–2074 [CrossRef][PubMed]
    [Google Scholar]
  8. Munsch P, Alatossava T, Marttinen N, Meyer J-M, Christen R et al. Pseudomonas costantinii sp. nov., another causal agent of brown blotch disease, isolated from cultivated mushroom sporophores in Finland. Int J Syst Evol Microbiol 2002; 52:1973–1983 [CrossRef][PubMed]
    [Google Scholar]
  9. Sawada H, Horita H, Misawa T, Takikawa Y. Pseudomonas grimontii, causal agent of turnip bacterial rot disease in Japan. J Gen Plant Pathol 2019; 85:413–423 [CrossRef]
    [Google Scholar]
  10. Behrendt U, Ulrich A, Schumann P. Fluorescent pseudomonads associated with the phyllosphere of grasses; Pseudomonas trivialis sp. nov., Pseudomonas poae sp. nov. and Pseudomonas congelans sp. nov. Int J Syst Evol Microbiol 2003; 53:1461–1469 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  11. Behrendt U, Ulrich A, Schumann P, Meyer J-M, Spröer C. Pseudomonas lurida sp. nov., a fluorescent species associated with the phyllosphere of grasses. Int J Syst Evol Microbiol 2007; 57:979–985 [CrossRef][PubMed]
    [Google Scholar]
  12. Iitomi A, Umekawa M, Taguchi T, Sasaki T. Occurrence and symptoms of bacterial rot disease in Welsh onion. Jpn J Phytopathol 1983; 49:415
    [Google Scholar]
  13. Umekawa M, Iitomi A, Sasaki T. Identification of the causal agent of bacterial rot disease in Welsh onion. Jpn J Phytopathol 1983; 49:415
    [Google Scholar]
  14. The Phytopathological Society of Japan Common Names of Plant Diseases in Japan Tokyo, Japan: The Phytopathological Society of Japan; 2019
    [Google Scholar]
  15. Nishiwaki Y. Occurrence of bacteria rot of welsh onion caused by Pseudomonas marginalis pv. marginalis in Hokkaido. Jpn J Phytopathol 2017; 83:71
    [Google Scholar]
  16. Sawada H, Kunugi Y, Watauchi K, Kudo A, Sato T. Bacterial spot, a new disease of grapevine (Vitis vinifera) caused by Xanthomonas arboricola . Jpn J Phytopathol 2011; 77:7–22 [CrossRef]
    [Google Scholar]
  17. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  18. Sawada H, Horita H, Nishimura F, Mori M. Pseudomonas salomonii, another causal agent of garlic spring rot in Japan. J Gen Plant Pathol. 2020In press
    [Google Scholar]
  19. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [CrossRef][PubMed]
    [Google Scholar]
  20. Tamura K, Nei M, Kumar S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci USA 2004; 101:11030–11035 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  21. Mulet M, Bennasar A, Lalucat J, García-Valdés E. An rpoD-based PCR procedure for the identification of Pseudomonas species and for their detection in environmental samples. Mol Cell Probes 2009; 23:140–147 [CrossRef][PubMed]
    [Google Scholar]
  22. Cunty A, Poliakoff F, Rivoal C, Cesbron S, Fischer-Le Saux M et al. Characterization of Pseudomonas syringae pv. actinidiae (Psa) isolated from France and assignment of Psa biovar 4 to a de novo pathovar: Pseudomonas syringae pv. actinidifoliorum pv. nov. Plant Pathol 2015; 64:582–596 [CrossRef]
    [Google Scholar]
  23. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  24. Rodriguez-R LM, Konstantinidis KT. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. PeerJ Preprints 2016; 4:e1900v1
    [Google Scholar]
  25. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [CrossRef][PubMed]
    [Google Scholar]
  26. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [CrossRef][PubMed]
    [Google Scholar]
  27. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [CrossRef][PubMed]
    [Google Scholar]
  28. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. Report of the AD hoc Committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987; 37:463–464 [CrossRef]
    [Google Scholar]
  29. Na S-I, Kim YO, Yoon S-H, Ha S-M, Baek I et al. UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [CrossRef][PubMed]
    [Google Scholar]
  30. Nei M, Kumar S. Molecular Evolution and Phylogenetics New York, USA: Oxford University Press; 2000
    [Google Scholar]
  31. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313 [CrossRef][PubMed]
    [Google Scholar]
  32. Beringer JE. R factor transfer in Rhizobium leguminosarum . J Gen Microbiol 1974; 84:188–198 [CrossRef][PubMed]
    [Google Scholar]
  33. Schaad NW, Jones JB, Chun W. Laboratory Guide for Identification of Plant Pathogenic Bacteria, 3rd ed. St. Paul, MN, USA: APS Press; 2001
    [Google Scholar]
  34. Lelliott RA, Billing E, Hayward AC. A determinative scheme for the fluorescent plant pathogenic pseudomonads. J Appl Bacteriol 1966; 29:470–489 [CrossRef][PubMed]
    [Google Scholar]
  35. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids 101, MIDI Technical Note. 1990 pp 1–7
    [Google Scholar]
  36. Ramírez-Bahena MH, Salazar S, Santín PJ, Sánchez-Rodríguez JA, Fernández-Pascual M et al. Pseudomonas edaphica sp. nov., isolated from rhizospheric soil of Cistus ladanifer L. in Spain. Int J Syst Evol Microbiol 2019; 69:3141–3147 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004123
Loading
/content/journal/ijsem/10.1099/ijsem.0.004123
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error