1887

Abstract

A Gram-stain-negative, catalase- and oxidase-positive, aerobic, rod-shaped, motile strain (PYC7W) was isolated from Lake Pengyanco on the Tibetan Plateau. Comparisons based on 16S rRNA gene sequences showed that strain PYC7W belongs to the genus , with YU-PRIM-29 and T68687 as its closest neighbours (96.8 and 96.6 % 16S rRNA gene sequence similarity, respectively), and only 93.1 % 16S rRNA gene sequence similarity to ATCC 33173. The predominant respiratory quinone of strain PYC7W is Q-9, with Q-8 as a minor component. The major fatty acids are C 6 and / or C ω7, C, C 6 and/or C ω7, and C 3OH. The polar lipids of strain PYC7W include phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylinositol and two unidentified phospholipids. Genome sequencing revealed a genome size of 4.79 Mbp and a G+C content of 62.9 mol%. DNA–DNA hybridization values of strain PYC7W showed 45, 30 and 38 % relatedness with DSM 21197, DSM 21196 and DSM 21198, respectively. Combining phenotypic, biochemical, genotypic and DNA–DNA hybridization data, we propose that strain PYC7W represents a novel species within the genus and to have the name sp. nov.; PYC7W (=CICC 24506= KCTC 62529) is the type strain.

Funding
This study was supported by the:
  • Qinglong Wu , Chinese Academy of Sciences , (Award QYZDJ-SSW-DQC030)
  • Qinglong Wu , National Natural Science Foundation of China , (Award 31730013)
  • Peng Xing , the Youth Innovation Promotion Association of CAS , (Award 2014273)
  • Peng Xing , National Natural Science Foundation of China , (Award 31722008)
  • Peng Xing , Science & Technology Basic Resources Investigation Program of China , (Award 2017FY100300)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004109
2020-03-20
2020-06-04
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/4/2859.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004109&mimeType=html&fmt=ahah

References

  1. Vreeland RH, Litchfield CD, Martin EL, Elliot E. Halomonas elongata, a new genus and species of extremely salt-tolerant bacteria. Int J Syst Bacteriol 1980; 30:485–495 [CrossRef]
    [Google Scholar]
  2. Dobson SJ, Franzmann PD. Unification of the genera Deleya (Baumann et al. 1983), Halomonas (Vreeland et al. 1980), and Halovibrio (Fendrich 1988) and the species Paracoccus halodenitrificans (Robinson and gibbons 1952) into a single genus, Halomonas, and placement of the genus Zymobacter in the family Halomonadaceae . Int J Syst Bacteriol 1996; 46:550–558 [CrossRef]
    [Google Scholar]
  3. Arahal DR, Ventosa A. The Family Halomonadaceae . In Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E. (editors) The Prokaryotes: Volume 6: Proteobacteria: Gamma Subclass New York, NY: Springer New York; 2006 pp 811–835
    [Google Scholar]
  4. Arahal DR, Vreeland RH, Litchfield CD, Mormile MR, Tindall BJ et al. Recommended minimal standards for describing new taxa of the family Halomonadaceae . Int J Syst Evol Microbiol 2007; 57:2436–2446 [CrossRef]
    [Google Scholar]
  5. Mata JA, Martínez-Cánovas J, Quesada E, Béjar V. A detailed phenotypic characterisation of the type strains of Halomonas species. Syst Appl Microbiol 2002; 25:360–375 [CrossRef]
    [Google Scholar]
  6. Sehgal SN, Gibbons NE. Effect of some metal ions on the growth of Halobacterium cutirubrum . Can J Microbiol 1960; 6:165–169 [CrossRef]
    [Google Scholar]
  7. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Sequencing Techniques in Bacterial Systematics New York, USA: Wiley; 1991 pp 115–175
    [Google Scholar]
  8. de la Haba RR, Márquez MC, Papke RT, Ventosa A. Multilocus sequence analysis of the family Halomonadaceae . Int J Syst Evol Microbiol 2012; 62:520–538 [CrossRef]
    [Google Scholar]
  9. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [CrossRef]
    [Google Scholar]
  10. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215:403–410 [CrossRef]
    [Google Scholar]
  11. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [CrossRef]
    [Google Scholar]
  12. Kimura M. The neutral theory of molecular evolution. Sci Am 1979; 241:98–126 [CrossRef]
    [Google Scholar]
  13. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [CrossRef]
    [Google Scholar]
  14. Kluge AG, Farris JS. Quantitative phyletics and the evolution of anurans. Syst Zool 1969; 18:1–32 [CrossRef]
    [Google Scholar]
  15. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [CrossRef]
    [Google Scholar]
  16. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 1870; 2016:33
    [Google Scholar]
  17. Jackman SD, Vandervalk BP, Mohamadi H, Chu J, Yeo S et al. ABySS 2.0: resource-efficient assembly of large genomes using a Bloom filter. Genome Res 2017; 27:768–777 [CrossRef]
    [Google Scholar]
  18. Yoon S-H, Ha S-min, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [CrossRef]
    [Google Scholar]
  19. Kim KK, Lee KC, Jeong H, Stevens DA, Lee J-S, Kwang Kyu K, Keun Chul L, Haeyoung J, Jung-Sook L. Draft genome sequence of the human pathogen Halomonas stevensii S18214T. J Bacteriol 2012; 194:5143 [CrossRef]
    [Google Scholar]
  20. Richter M, Rosselló-Móra R, Michael R, Ramon RM. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [CrossRef]
    [Google Scholar]
  21. De Ley J, Cattoir H, Reynaerts A. The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 1970; 12:133–142 [CrossRef]
    [Google Scholar]
  22. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR, Brenner DJ, Grimont PAD et al. Report of the ad hoc Committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987; 37:463–464 [CrossRef]
    [Google Scholar]
  23. Dong XZ, Cai MY. Determinative Manual for Routine Bacteriology Beijing, China: Beijing Scientific Press; 2001
    [Google Scholar]
  24. Boltyanskaya YV, Kevbrin VV, Lysenko AM, Kolganova TV, Tourova TP et al. Halomonas mongoliensis sp. nov. and Halomonas kenyensis sp. nov., new haloalkaliphilic denitrifiers capable of N2O reduction, isolated from soda lakes. Microbiology 2007; 76:739–747 [CrossRef]
    [Google Scholar]
  25. Tang X, Zhai L, Lin Y, Yao S, Wang L et al. Halomonas alkalicola sp. nov., isolated from a household product plant. Int J Syst Evol Microbiol 2017; 67:1546–1550 [CrossRef]
    [Google Scholar]
  26. Ventosa A, Quesada E, Rodriguez-Valera F, Ruiz-Berraquero F, Ramos-Cormenzana A. Numerical taxonomy of moderately halophilic Gram-negative rods. Microbiology 1982; 128:1959–1968 [CrossRef]
    [Google Scholar]
  27. Kuykendall LD, Roy MA, O'Neill JJ, Devine TE. Fatty acids, antibiotic resistance and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum . Int J Syst Bacteriol 1988; 38:358–361 [CrossRef]
    [Google Scholar]
  28. Sasser M. Identification of bacteria through fatty acid analysis. In Klement Z, Rudolph K, Sands DC. (editors) Methods in Phytobacteriology Budapest, Hungary: Akademiai Kaido; 1990 pp 199–204
    [Google Scholar]
  29. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [CrossRef]
    [Google Scholar]
  30. Tindall BJ. Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 1990; 66:199–202 [CrossRef]
    [Google Scholar]
  31. González-Domenech CM, Martínez-Checa F, Quesada E, Béjar V. Halomonas fontilapidosi sp. nov., a moderately halophilic, denitrifying bacterium. Int J Syst Evol Microbiol 2009; 59:1290–1296 [CrossRef]
    [Google Scholar]
  32. Martínez-Cánovas MJ, Quesada E, Llamas I, Béjar V. Halomonas ventosae sp. nov., a moderately halophilic, denitrifying, exopolysaccharide-producing bacterium. Int J Syst Evol Microbiol 2004; 54:733–737 [CrossRef]
    [Google Scholar]
  33. Lee J-C, Kim S-J, Whang K-S. Halomonas sediminicola sp. nov., a moderately halophilic bacterium isolated from a solar saltern sediment. Int J Syst Evol Microbiol 2016; 66:3865–3872 [CrossRef]
    [Google Scholar]
  34. Kim KK, Lee KC, Oh H-M, Lee J-S. Halomonas stevensii sp. nov., Halomonas hamiltonii sp. nov. and Halomonas johnsoniae sp. nov., isolated from a renal care centre. Int J Syst Evol Microbiol 2010; 60:369–377 [CrossRef]
    [Google Scholar]
  35. Lu H-B, Xing P, Zhai L, Phurbu D, Tang Q et al. Halomonas tibetensis sp. nov., isolated from saline lakes on Tibetan Plateau. J Microbiol 2018; 56:493–499 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004109
Loading
/content/journal/ijsem/10.1099/ijsem.0.004109
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error