1887

Abstract

Two Gram-stain-negative, strictly aerobic, marine bacteria, designated as strains RKSG066 and RKSG123, were isolated from a sponge collected at a depth of 15 m off the west coast of San Salvador, The Bahamas. Investigation of nearly full-length 16S rRNA gene and whole genome-based phylogenies revealed that both strains belong to the order within the class and phylum . Strain RKSG066 formed a monophyletic clade with described members of the genus , while strain RKSG123 formed a well-supported paraphyletic branch apart from this and other related genera within the family . For both RKSG066 and RKSG123, optimal growth parameters were 30–37 °C, pH 7–8 and 2–3 % (w/v) NaCl; cells were catalase- and oxidase-positive, and flexirubin-type pigments were absent. The predominant fatty acids were iso-C, C, C, iso-C 3-OH, C ω5, iso-C 3-OH, C ω9 and iso-C G for RKSG066, and iso-C 3-OH, C ω5, iso-C, C 3-OH and summed feature 4 (iso-C I and/or anteiso-C B) for RKSG123. Menaquinone-7 was the major respiratory quinone for both strains. The DNA G+C contents of RKSG066 and RKSG123 were 39.5 and 36.7 mol%, respectively. On the basis of phylogenetic distinctiveness and polyphasic analysis, the type strain RKSG066 (=TSD-73=LMG 29870) is proposed to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain RKSG123 (=TSD-75=LMG 30075) is proposed to represent the type species of a novel genus and species with the proposed name gen. nov., sp. nov. Additionally, the genus is emended to include strains of orange-pigmented colonies that contain the predominant cellular fatty acids C, C, C 5 and C 9.

Funding
This study was supported by the:
  • Stacey R Goldberg , Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada , (Award 462303)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004108
2020-04-02
2020-06-02
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/4/2766.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004108&mimeType=html&fmt=ahah

References

  1. Hentschel U, Usher KM, Taylor MW. Marine sponges as microbial fermenters. FEMS Microbiol Ecol 2006; 55:167–177 [CrossRef][PubMed]
    [Google Scholar]
  2. Schmitt S, Tsai P, Bell J, Fromont J, Ilan M et al. Assessing the complex sponge microbiota: core, variable and species-specific bacterial communities in marine sponges. ISME J 2012; 6:564–576 [CrossRef][PubMed]
    [Google Scholar]
  3. Hentschel U, Piel J, Degnan SM, Taylor MW. Genomic insights into the marine sponge microbiome. Nat Rev Microbiol 2012; 10:641–654 [CrossRef][PubMed]
    [Google Scholar]
  4. Easson CG, Thacker RW. Phylogenetic signal in the community structure of host-specific microbiomes of tropical marine sponges. Front Microbiol 2014; 5:532 [CrossRef][PubMed]
    [Google Scholar]
  5. Pita L, Rix L, Slaby BM, Franke A, Hentschel U. The sponge holobiont in a changing ocean: from microbes to ecosystems. Microbiome 2018; 6:46 [CrossRef][PubMed]
    [Google Scholar]
  6. Fieseler L, Horn M, Wagner M, Hentschel U. Discovery of the novel candidate phylum "Poribacteria" in marine sponges. Appl Environ Microbiol 2004; 70:3724–3732 [CrossRef][PubMed]
    [Google Scholar]
  7. Sipkema D, Schippers K, Maalcke WJ, Yang Y, Salim S et al. Multiple approaches to enhance the cultivability of bacteria associated with the marine sponge Haliclona (gellius) sp. Appl Environ Microbiol 2011; 77:2130–2140 [CrossRef][PubMed]
    [Google Scholar]
  8. Montalvo NF, Davis J, Vicente J, Pittiglio R, Ravel J et al. Integration of culture-based and molecular analysis of a complex sponge-associated bacterial community. PLoS One 2014; 9:1–8 [CrossRef][PubMed]
    [Google Scholar]
  9. Laport MS. Isolating bacteria from sponges: why and how?. Current Pharma Biotech 2018; 18:1224–1236
    [Google Scholar]
  10. Versluis D, McPherson K, van Passel MWJ, Smidt H, Sipkema D. Recovery of previously uncultured bacterial genera from three Mediterranean sponges. Mar Biotechnol 2017; 19:454–468 [CrossRef][PubMed]
    [Google Scholar]
  11. Paster BJ, Dewhirst FE, Olsen I, Fraser GJ. Phylogeny of Bacteroides, Prevotella, and Porphyromonas spp. and related bacteria. J Bacteriol 1994; 176:725–732 [CrossRef][PubMed]
    [Google Scholar]
  12. Krieg NR, Ludwig W, Euzéby J, Whitman WB, Phylum XIV. Bacteroidetes phyl. nov. In Krieg NR. editor Bergey’s Manual of Systematic Bacteriology New York, NY: Springer; 2010 pp 25–469
    [Google Scholar]
  13. Hahnke RL, Meier-Kolthoff JP, García-López M, Mukherjee S, Huntemann M et al. Genome-Based taxonomic classification of Bacteroidetes. Front Microbiol 2003; 2016:7
    [Google Scholar]
  14. Hennig W. Phylogenetic systematics. Annu Rev Ecol Syst 1965; 10:97–116
    [Google Scholar]
  15. Wiley EO, Lieberman BS. Phylogenetics: Theory and Practice of Phylogenetic Systematics Hoboken, NJ: John Wiley & Sons, Inc; 2011
    [Google Scholar]
  16. Reichenbach H, Yasuyoshi K. Emendation of the genus Cytophaga and transfer of Cytophaga agarovorans and Cytophaga salmonicolor to Marinilabilia gen. nov. phylogenetic analysis of the Flavobacterium-Cytophaga complex. Int J Syst Bacteriol 1996; 46:599–603
    [Google Scholar]
  17. Ludwig W, Klenk H-P. Overview: a phylogenetic backbone and taxonomic framework for procaryotic systematics. In Boone DR, Castenholz RW, Garrity GM. (editors) Bergey’s Manual of Systematic Bacteriology New York, NY: Springer; 2001 pp 49–65
    [Google Scholar]
  18. Guo Y, Zheng W, Rong X, Huang Y. A multilocus phylogeny of the Streptomyces griseus 16S rRNA gene clade: use of multilocus sequence analysis for streptomycete systematics. Int J Syst Evol Microbiol 2008; 58:149–159 [CrossRef][PubMed]
    [Google Scholar]
  19. Klenk H-P, Göker M. En route to a genome-based classification of archaea and bacteria?. Syst Appl Microbiol 2010; 33:175–182 [CrossRef][PubMed]
    [Google Scholar]
  20. Alanjary M, Steinke K, Ziemert N. AutoMLST: an automated web server for generating multi-locus species trees highlighting natural product potential. Nucleic Acids Res 2019; 47:W276–W282 [CrossRef][PubMed]
    [Google Scholar]
  21. Munoz R, Rosselló-Móra R, Amann R. Revised phylogeny of Bacteroidetes and proposal of sixteen new taxa and two new combinations including Rhodothermaeota phyl. nov. Syst Appl Microbiol 2016; 39:281–296 [CrossRef][PubMed]
    [Google Scholar]
  22. Woese CR. Bacterial evolution. Microbiol Rev 1987; 51:221–271
    [Google Scholar]
  23. Paster BJ, Ludwig W, Weisburg WG, Stackebrandt E, Hespell RB et al. A phylogenetic grouping of the Bacteroides, Cytophagas, and certain flavobacteria. Syst Appl Microbiol 1985; 6:34–42
    [Google Scholar]
  24. Caumette P, Brochier-Armanet C, Normand P et al. Taxonomy and Phylogeny of Prokaryotes. In Bertrand J-C, Caumette P, Lebaron P, Matheron R, Normand P et al. (editors) Environmental Microbiology: Fundamentals and Applications Dordrecht, Netherlands: Springer; 2015 pp 145–190
    [Google Scholar]
  25. Leadbetter ER. Order II Cytophageles. In Buchana RE, Gibbons NE. (editors) Bergey's Manual of Determinative Bacteriology, 8th Ed. Baltimore, MD: The Williams and Wilkins Co; 1974 pp 99–112
    [Google Scholar]
  26. Reichenbach H. The order cytophagales. In Balows A, Trüper HG, Dworkin M, Schleifer KH, Harder W. (editors) The Prokaryotes New York, NY: Springer; 1992 pp 3631–3675
    [Google Scholar]
  27. Ludwig W, Euzéby J, Whitman WB et al. Road map of the phyla Bacteroidetes, Spirochaetes, Tenericutes (Mollicutes), Acidobacteria, Fibrobacteres, Fusobacteria, Dictyoglomi, Gemmatimonadetes, Lentisphaerae, Verrucomicrobia, Chlamydiae, and Planctomycetes . In Parte A, Krieg NR, Ludwig W, Whitman WB, Hedlund BP et al. (editors) Bergey’s Manual of Systematic Bacteriology New York, NY: Springer; 2010
    [Google Scholar]
  28. Nakagawa Y. IV. Cytophagia class. nov. In Krieg NR, Staley JT, Brown DR, Hedlund BP, Paster BJ et al. (editors) Bergeys Manual of Systematic Bacteriology New York, NY: Wiley Online Library; 2011 p 370
    [Google Scholar]
  29. Nedashkovskaya OI, Ludwig W. Flammeovirgaceae fam. nov. In Nedashkovskaya OI, Ludwig W. (editors) Bergeys Manual of Systematics of Archaea and Bacteria Hoboken, NJ: John Wiley & Sons, Inc; 2015 pp 1–6
    [Google Scholar]
  30. Haber M, Shefer S, Giordano A, Orlando P, Gambacorta A et al. Luteivirga sdotyamensis gen. nov., sp. nov., a novel bacterium of the phylum Bacteroidetes isolated from the Mediterranean sponge Axinella polypoides . Int J Syst Evol Microbiol 2013; 63:939–945 [CrossRef][PubMed]
    [Google Scholar]
  31. Kim J-J, Alkawally M, Brady AL, Rijpstra WIC, Sinninghe Damsté JS et al. Chryseolinea serpens gen. nov., sp. nov., a member of the phylum Bacteroidetes isolated from soil. Int J Syst Evol Microbiol 2013; 63:654–660 [CrossRef][PubMed]
    [Google Scholar]
  32. Yoon J-H, Kang S-J, Lee S-Y, Lee J-S, Park S. Ohtaekwangia koreensis gen. nov., sp. nov. and Ohtaekwangia kribbensis sp. nov., isolated from marine sand, deep-branching members of the phylum Bacteroidetes. Int J Syst Evol Microbiol 2011; 61:1066–1072 [CrossRef][PubMed]
    [Google Scholar]
  33. Marmur J. A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 1961; 3:208–218
    [Google Scholar]
  34. Correa H, Haltli B, Duque C, Kerr R. Bacterial communities of the gorgonian octocoral Pseudopterogorgia elisabethae . Microb Ecol 2013; 66:972–985 [CrossRef][PubMed]
    [Google Scholar]
  35. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics New York, NY: John Wiley Sons, Inc; 1991 pp 115–175
    [Google Scholar]
  36. Pike RE, Haltli B, Kerr RG. Description of Endozoicomonas euniceicola sp. nov. and Endozoicomonas gorgoniicola sp. nov., bacteria isolated from the octocorals Eunicea fusca and Plexaura sp., and an emended description of the genus Endozoicomonas . Int J Syst Evol Microbiol 2013; 63:4294–4302 [CrossRef][PubMed]
    [Google Scholar]
  37. Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 1977; 74:5463–5467 [CrossRef][PubMed]
    [Google Scholar]
  38. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215:403–410 [CrossRef][PubMed]
    [Google Scholar]
  39. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  40. Kim O-S, Cho Y-J, Lee K, Yoon S-H, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  41. Pruesse E, Peplies J, Glöckner FO. Sina: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012; 28:1823–1829 [CrossRef][PubMed]
    [Google Scholar]
  42. Yilmaz P, Parfrey LW, Yarza P, Gerken J, Pruesse E et al. The SILVA and "All-species Living Tree Project (LTP)" taxonomic frameworks. Nucleic Acids Res 2014; 42:D643–D648 [CrossRef][PubMed]
    [Google Scholar]
  43. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  44. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  45. Eck RV, Dayhoff MO. In: Chang MA, Eck RV, Dayhoff MO, Sochard MR (editors). Atlas of Protein Sequence and Structure Silver Spring, MD: National Biomedical Research Foundation; 1965
    [Google Scholar]
  46. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  47. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  48. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  49. Illumina Nextera XT DNA library PreP kit reference guide (15031942); 2019
  50. Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 2008; 18:821–829 [CrossRef][PubMed]
    [Google Scholar]
  51. Lee I, Chalita M, Ha S-M, Na S-I, Yoon S-H et al. ContEst16S: an algorithm that identifies contaminated prokaryotic genomes using 16S RNA gene sequences. Int J Syst Evol Microbiol 2017; 67:2053–2057 [CrossRef][PubMed]
    [Google Scholar]
  52. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [CrossRef][PubMed]
    [Google Scholar]
  53. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:1–14
    [Google Scholar]
  54. Auch AF, Klenk H-P, Göker M. Standard operating procedure for calculating genome-to-genome distances based on high-scoring segment pairs. Stand Genomic Sci 2010; 2:142–148 [CrossRef][PubMed]
    [Google Scholar]
  55. Finn RD, Clements J, Eddy SR. HMMER web server: interactive sequence similarity searching. Nucleic Acids Res 2011; 39:W29–37 [CrossRef][PubMed]
    [Google Scholar]
  56. Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J et al. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res 2016; 44:D279–285 [CrossRef][PubMed]
    [Google Scholar]
  57. Haft DH, Selengut JD, White O. The TIGRFAMs database of protein families. Nucleic Acids Res 2003; 31:371–373 [CrossRef][PubMed]
    [Google Scholar]
  58. Suyama M, Torrents D, Bork P. PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res 2006; 34:W609–612 [CrossRef][PubMed]
    [Google Scholar]
  59. Yang Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 2007; 24:1586–1591 [CrossRef][PubMed]
    [Google Scholar]
  60. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013; 30:772–780 [CrossRef][PubMed]
    [Google Scholar]
  61. Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009; 25:1972–1973 [CrossRef][PubMed]
    [Google Scholar]
  62. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015; 32:268–274 [CrossRef][PubMed]
    [Google Scholar]
  63. Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 2017; 14:587–589 [CrossRef][PubMed]
    [Google Scholar]
  64. Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol 2018; 35:518–522 [CrossRef][PubMed]
    [Google Scholar]
  65. Tavaré S. Some probabilistic and statistical problems in the analysis of DNA sequences. Lectures Math Life Sci 1986; 17:57–86
    [Google Scholar]
  66. Yang Z. Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approximate methods. J Mol Evol 1994; 39:306–314 [CrossRef][PubMed]
    [Google Scholar]
  67. Gu X, Fu YX, Li WH. Maximum likelihood estimation of the heterogeneity of substitution rate among nucleotide sites. Mol Biol Evol 1995; 12:546–557 [CrossRef][PubMed]
    [Google Scholar]
  68. Letunic I, Bork P. Interactive tree of life (iTOL) V4: recent updates and new developments. Nucleic Acids Res 2019; 47:W256–W259 [CrossRef][PubMed]
    [Google Scholar]
  69. Gee AH, Hunt GA. Single cell technic a presentation of the pipette method as a routine laboratory procedure. J Bacteriol 1928; 16:327–353 [CrossRef][PubMed]
    [Google Scholar]
  70. Tittsler RP, Sandholzer LA. The use of semi-solid agar for the detection of bacterial Motility1. J Bacteriol 1936; 31:575–580 [CrossRef][PubMed]
    [Google Scholar]
  71. Reichenbach H, Kohl W, Böttger-Vetter A, Achenbach H. Flexirubin-type pigments in Flavobacterium. Arch Microbiol 1980; 126:291–293
    [Google Scholar]
  72. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, Microbial ID, Inc. 1989
    [Google Scholar]
  73. Tindall BJ. Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 1990; 66:199–202
    [Google Scholar]
  74. Lohman DC, Forouhar F, Beebe ET, Stefely MS, Minogue CE et al. Mitochondrial Coq9 is a lipid-binding protein that associates with Coq7 to enable coenzyme Q biosynthesis. Proc Natl Acad Sci U S A 2014; 111:E4697–E4705 [CrossRef][PubMed]
    [Google Scholar]
  75. Ventosa A, Marquez MC, Kocur M, Tindall BJ. Comparative study of "Micrococcus sp." strains CCM 168 and CCM 1405 and members of the genus Salinicoccus . Int J Syst Bacteriol 1993; 43:245–248 [CrossRef][PubMed]
    [Google Scholar]
  76. Worliczek HL, Kämpfer P, Rosengarten R, Tindall BJ, Busse H-J. Polar lipid and fatty acid profiles--re-vitalizing old approaches as a modern tool for the classification of mycoplasmas?. Syst Appl Microbiol 2007; 30:355–370 [CrossRef][PubMed]
    [Google Scholar]
  77. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241
    [Google Scholar]
  78. Wang Z, Benning C. Arabidopsis thaliana polar glycerolipid profiling by thin layer chromatography (TLC) coupled with gas-liquid chromatography (GLC). J Vis Exp 2011; 49:2518
    [Google Scholar]
  79. Tamaoka J, Komagata K. Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 1984; 25:125–128
    [Google Scholar]
  80. Nedashkovskaya OI, Kim SB, Shin DS, Beleneva IA, Mikhailov VV. Fulvivirga kasyanovii gen. nov., sp. nov., a novel member of the phylum Bacteroidetes isolated from seawater in a mussel farm. Int J Syst Evol Microbiol 2007; 57:1046–1049 [CrossRef][PubMed]
    [Google Scholar]
  81. Nupur D, Sharma S, Kumar Singh P, Suresh K, Anil Kumar P. Fulvivirga imtechensis sp. nov., a member of the phylum Bacteroidetes. Int J Syst Evol Microbiol 2012; 62:2213–2217 [CrossRef][PubMed]
    [Google Scholar]
  82. Jung Y-T, M-J H, Park S, Lee J-S, Yoon J-H. Fulvivirga lutimaris sp. nov., isolated from a tidal flat sediment of Yellow Sea in Korea. Int J Syst Evol Microbiol 2016; 66:2604–2609
    [Google Scholar]
  83. Ludwig W, Strunk O, Klugbauer S, Klugbauer N, Weizenegger M et al. Bacterial phylogeny based on comparative sequence analysis. Electrophoresis 1998; 19:554–568 [CrossRef][PubMed]
    [Google Scholar]
  84. Bosshard PP, Abels S, Zbinden R, Böttger EC, Altwegg M. Ribosomal DNA sequencing for identification of aerobic gram-positive rods in the clinical laboratory (an 18-month evaluation). J Clin Microbiol 2003; 41:4134–4140 [CrossRef][PubMed]
    [Google Scholar]
  85. Ludwig W, Euzéby JP, Whitman WB et al. Rhodothermaceae fam. nov. In Krieg NR, Staley JT, Brown BP, Hedlund BJ, Paster NL et al. (editors) Bergey’s Manual of Systematic Bacteriology New York, NY: Springer; 2015 p 457
    [Google Scholar]
  86. Lau SCK, Tsoi MMY, Li X, Plakhotnikova I, Dobretsov S, SCK L et al. Description of Fabibacter halotolerans gen. nov., sp. nov. and Roseivirga spongicola sp. nov., and reclassification of [Marinicola] seohaensis as Roseivirga seohaensis comb. nov. Int J Syst Evol Microbiol 2006; 56:1059–1065
    [Google Scholar]
  87. Huo Y-Y, Xu L, Wang C-S, Yang J-Y, You H et al. Fabibacter pacificus sp. nov., a moderately halophilic bacterium isolated from seawater. Int J Syst Evol Microbiol 2013; 63:3710–3714 [CrossRef][PubMed]
    [Google Scholar]
  88. Wong S-K, Park S, Lee J-S, Lee KC, Chiura HX et al. Fabibacter misakiensis sp. nov., a marine bacterium isolated from coastal surface water. Int J Syst Evol Microbiol 2015; 65:3276–3280 [CrossRef][PubMed]
    [Google Scholar]
  89. Nedashkovskaya OI, Kim SB, Lee DH, Lysenko AM, Shevchenko LS et al. Roseivirga ehrenbergii gen. nov., sp. nov., a novel marine bacterium of the phylum 'Bacteroidetes', isolated from the green alga Ulva fenestrata . Int J Syst Evol Microbiol 2005; 55:231–234 [CrossRef][PubMed]
    [Google Scholar]
  90. Nedashkovskaya OI, Kim SB, Lysenko AM, Kalinovskaya NI, Mikhailov VV. Reclassification of Roseivirga seohaensis (Yoon et al. 2005) Lau et al. 2006 as a later synonym of Roseivirga ehrenbergii Nedashkovskaya et al. 2005 and emendation of the species description. Int J Syst Evol Microbiol 2008; 58:1194–1197 [CrossRef][PubMed]
    [Google Scholar]
  91. Pan J, Sun C, Wang R-J, Wu M. Roseivirga marina sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2015; 65:4239–4243 [CrossRef][PubMed]
    [Google Scholar]
  92. Selvaratnam C, Thevarajoo S, Goh KM, Chan K-G, Chong CS. Proposal to reclassify Roseivirga ehrenbergii (Nedashkovskaya et al., 2008) as Roseivirga seohaensis comb. nov., description of Roseivirga seohaensis subsp. aquiponti subsp. nov. and emendation of the genus Roseivirga . Int J Syst Evol Microbiol 2016; 66:5537–5543 [CrossRef][PubMed]
    [Google Scholar]
  93. Nedashkovskaya OI, Vancanneyt M, Kim SB, Bae KS. Reclassification of Flexibacter tractuosus (Lewin 1969) Leadbetter 1974 and 'Microscilla sericea' Lewin 1969 in the genus Marivirga gen. nov. as Marivirga tractuosa comb. nov. and Marivirga sericea nom. rev., comb. nov. Int J Syst Evol Microbiol 2010; 60:1858–1863 [CrossRef][PubMed]
    [Google Scholar]
  94. Lin C-Y, Zhang X-Y, Liu A, Liu C, Song X-Y et al. Marivirga atlantica sp. nov., isolated from seawater and emended description of the genus Marivirga . Int J Syst Evol Microbiol 2015; 65:1515–1519 [CrossRef][PubMed]
    [Google Scholar]
  95. Xu Y, Zhang R, Li Q, Liu K, Jiao N. Marivirga lumbricoides sp. nov., a marine bacterium isolated from the South China Sea. Int J Syst Evol Microbiol 2015; 65:452–456 [CrossRef][PubMed]
    [Google Scholar]
  96. Muramatsu Y, Kamakura Y, Takahashi M, Nakagawa Y, Reichenbach H. Reclassification of Flexibacter tractuosus NBRC 15981T as Marivirga harenae sp. nov. in the family Flammeovirgaceae. Int J Syst Evol Microbiol 2017; 67:1937–1942 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004108
Loading
/content/journal/ijsem/10.1099/ijsem.0.004108
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error