1887

Abstract

A Gram-stain-positive anaerobic rod-shaped bacterium, designated strain Marseille-P3275, was isolated using culturomics from the vaginal discharge of healthy French woman. Marseille-P3275 was non-motile and did not form spores. Cells had neither catalase nor oxidase activity. The major fatty acids were C (29 %), Cω9 (18 %), and iso-C (17 %). The genomic DNA G+C content was 50.64 mol%. The phylogenetic analysis based on 16S rRNA gene sequence indicated that Marseille-P3275 was related to members of the family (between 90.32–92.92 % sequence similarity) with formation of a clade with the monospecific genus (type species ). On the basis of these phylogenetic and phenotypic differences, Marseille-P3275 was classified in a novel genus, , as gen. nov., sp. nov. The type strain is Marseille-P3275 (=CSUR P3275=CECT 9677).

Funding
This study was supported by the:
  • Fondation Méditerranée Infection
    • Principle Award Recipient: Not Applicable
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004106
2020-07-06
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/7/4091.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004106&mimeType=html&fmt=ahah

References

  1. Kumar N, Behera B, Sagiri SS, Pal K, Ray SS et al. Bacterial vaginosis: etiology and modalities of treatment–A brief note. J Pharm Bioallied Sci 2011; 3:496 [View Article][PubMed]
    [Google Scholar]
  2. Li J, McCormick J, Bocking A, Reid G. Importance of vaginal microbes in reproductive health. Reprod Sci 2012; 19:235–242 [View Article][PubMed]
    [Google Scholar]
  3. Onderdonk AB, Delaney ML, Fichorova RN. The human microbiome during bacterial vaginosis. Clin Microbiol Rev 2016; 29:223–238 [View Article][PubMed]
    [Google Scholar]
  4. Svare JA, Schmidt H, Hansen BB, Lose G. Bacterial vaginosis in a cohort of Danish pregnant women: prevalence and relationship with preterm delivery, low birthweight and perinatal infections. BJOG Int J Obstet Gynaecol 2006; 113:1419–1425 [View Article]
    [Google Scholar]
  5. Marrazzo JM, Hillier SL. Bacterial vaginosis. Sexually Transmitted Diseases Elsevier; 2015 pp 463–498
    [Google Scholar]
  6. Lagier J-C, Hugon P, Khelaifia S, Fournier P-E, La Scola B et al. The rebirth of culture in microbiology through the example of culturomics to study human gut microbiota. Clin Microbiol Rev 2015; 28:237–264 [View Article][PubMed]
    [Google Scholar]
  7. Lagier J-C, Khelaifia S, Alou MT, Ndongo S, Dione N et al. Culture of previously uncultured members of the human gut microbiota by culturomics. Nat Microbiol 2016; 1:16203 [View Article][PubMed]
    [Google Scholar]
  8. Stackebrandt E, Rainey FA, Ward-Rainey NL. Proposal for a new hierarchic classification system, actinobacteria classis nov. Int J Syst Bacteriol 1997; 47:479–491 [View Article]
    [Google Scholar]
  9. Zhi X-Y, Li W-J, Stackebrandt E. An update of the structure and 16S rRNA gene sequence-based definition of higher ranks of the class Actinobacteria, with the proposal of two new suborders and four new families and emended descriptions of the existing higher taxa. Int J Syst Evol Microbiol 2009; 59:589–608 [View Article][PubMed]
    [Google Scholar]
  10. Scholz CFP, Kilian M. The natural history of cutaneous propionibacteria, and reclassification of selected species within the genus Propionibacterium to the proposed novel genera Acidipropionibacterium gen. nov., Cutibacterium gen. nov. and Pseudopropionibacterium gen. nov. Int J Syst Evol Microbiol 2016; 66:4422–4432 [View Article][PubMed]
    [Google Scholar]
  11. Downes J, Wade WG. Propionibacterium acidifaciens sp. nov., isolated from the human mouth. Int J Syst Evol Microbiol 2009; 59:2778–2781 [View Article][PubMed]
    [Google Scholar]
  12. Aubin GG, Bémer P, Kambarev S, Patel NB, Lemenand O et al. Propionibacterium namnetense sp. nov., isolated from a human bone infection. Int J Syst Evol Microbiol 2016; 66:3393–3399 [View Article][PubMed]
    [Google Scholar]
  13. Stackebrandt E, Schumann P, Schaal KP, Weiss N. Propionimicrobium gen. nov., a new genus to accommodate Propionibacterium lymphophilum (Torrey 1916) Johnson and Cummins 1972, 1057AL as Propionimicrobium lymphophilum comb. nov. Int J Syst Evol Microbiol 2002; 52:1925–1927 [View Article][PubMed]
    [Google Scholar]
  14. Bernard KA, Shuttleworth L, Munro C, Forbes-Faulkner JC, Pitt D et al. Propionibacterium australiense sp. nov. derived from granulomatous bovine lesions. Anaerobe 2002; 8:41–47 [View Article]
    [Google Scholar]
  15. Sugawara Y, Ueki A, Abe K, Kaku N, Watanabe K et al. Propioniciclava tarda gen. nov., sp. nov., isolated from a methanogenic reactor treating waste from cattle farms. Int J Syst Evol Microbiol 2011; 61:2298–2303 [View Article][PubMed]
    [Google Scholar]
  16. Li G-D, Chen X, Li Q-Y, Xu F-J, Qiu S-M et al. Tessaracoccus rhinocerotis sp. nov., isolated from the faeces of Rhinoceros unicornis . Int J Syst Evol Microbiol 2016; 66:922–927 [View Article][PubMed]
    [Google Scholar]
  17. Lucena-Padrós H, González JM, Caballero-Guerrero B, Ruiz-Barba JL, Maldonado-Barragán A. Propionibacterium olivae sp. nov. and Propionibacterium damnosum sp. nov., isolated from spoiled packaged Spanish-style green olives. Int J Syst Evol Microbiol 2014; 64:2980–2985 [View Article][PubMed]
    [Google Scholar]
  18. Jung S-Y, Kim H-S, Song JJ, Lee S-G, Oh T-K et al. Aestuariimicrobium kwangyangense gen. nov., sp. nov., an ll-diaminopimelic acid-containing bacterium isolated from tidal flat sediment. Int J Syst Evol Microbiol 2007; 57:2114–2118 [View Article][PubMed]
    [Google Scholar]
  19. Zhang X, Zhang J, Zhang Y, Xin Y, He H. Friedmanniella flava sp. nov., a soil actinomycete. Int J Syst Evol Microbiol 2013; 63:1771–1775 [View Article][PubMed]
    [Google Scholar]
  20. Fournier P-E, Drancourt M. New Microbes New Infections promotes modern prokaryotic taxonomy: a new section TaxonoGenomics: new genomes of microorganisms in humans. New Microbes New Infect 2015; 7:48–49 [View Article][PubMed]
    [Google Scholar]
  21. Fournier P-E, Lagier J-C, Dubourg G, Raoult D. From culturomics to taxonomogenomics: a need to change the taxonomy of prokaryotes in clinical microbiology. Anaerobe 2015; 36:73–78 [View Article][PubMed]
    [Google Scholar]
  22. Menard J-P, Fenollar F, Henry M, Bretelle F, Raoult D. Molecular quantification of Gardnerella vaginalis and Atopobium vaginae loads to predict bacterial vaginosis. Clin Infect Dis 2008; 47:33–43 [View Article][PubMed]
    [Google Scholar]
  23. Seng P, Drancourt M, Gouriet F, La Scola B, Fournier P-E et al. Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Infect Dis 2009; 49:543–551 [View Article][PubMed]
    [Google Scholar]
  24. Drancourt M, Bollet C, Carlioz A, Martelin R, Gayral JP et al. 16S ribosomal DNA sequence analysis of a large collection of environmental and clinical unidentifiable bacterial isolates. J Clin Microbiol 2000; 38:3623–3630 [View Article][PubMed]
    [Google Scholar]
  25. Morel A-S, Dubourg G, Prudent E, Edouard S, Gouriet F et al. Complementarity between targeted real-time specific PCR and conventional broad-range 16S rDNA PCR in the syndrome-driven diagnosis of infectious diseases. Eur J Clin Microbiol Infect Dis 2015; 34:561–570 [View Article][PubMed]
    [Google Scholar]
  26. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z et al. Gapped blast and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997; 25:3389–3402 [View Article][PubMed]
    [Google Scholar]
  27. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  28. Meier-Kolthoff JP, Göker M, Spröer C, Klenk H-P. When should a DDH experiment be mandatory in microbial taxonomy?. Arch Microbiol 2013; 195:413–418 [View Article][PubMed]
    [Google Scholar]
  29. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  30. Edgar RC. Muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article][PubMed]
    [Google Scholar]
  31. Meier-Kolthoff JP, Klenk H-P, Göker M. Taxonomic use of DNA G+C content and DNA–DNA hybridization in the genomic age. Int J Syst Evol Microbiol 2014; 64:352–356 [View Article][PubMed]
    [Google Scholar]
  32. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313 [View Article][PubMed]
    [Google Scholar]
  33. Goloboff PA, Farris JS, Nixon KC. TNT, a free program for phylogenetic analysis. Cladistics 2008; 24:774–786 [View Article]
    [Google Scholar]
  34. Pattengale ND, Alipour M, Bininda-Emonds ORP, Moret BME, Stamatakis A. How many bootstrap replicates are necessary?. J Comput Biol 2010; 17:337–354 [View Article][PubMed]
    [Google Scholar]
  35. Swofford DL. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4.0b10 Sunderland: Sinauer Associates; 2002
    [Google Scholar]
  36. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22:4673–4680 [View Article][PubMed]
    [Google Scholar]
  37. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  38. Togo AH, Durand G, Khelaifia S, Armstrong N, Robert C et al. Fournierella massiliensis gen. nov., sp. nov., a new human-associated member of the family Ruminococcaceae . Int J Syst Evol Microbiol 2017; 67:1393–1399 [View Article][PubMed]
    [Google Scholar]
  39. Citron DM, Ostovari MI, Karlsson A, Goldstein EJ. Evaluation of the E test for susceptibility testing of anaerobic bacteria. J Clin Microbiol 1991; 29:2197–2203 [View Article][PubMed]
    [Google Scholar]
  40. Matuschek E, Brown DFJ, Kahlmeter G. Development of the EUCAST disk diffusion antimicrobial susceptibility testing method and its implementation in routine microbiology laboratories. Clin Microbiol Infect 2014; 20:O255–O266 [View Article][PubMed]
    [Google Scholar]
  41. Sasser M. Bacterial identification by gas chromatographic analysis of fatty acids methyl esters (GC-FAME), MIDI, Technical Note. 1990
    [Google Scholar]
  42. Dione N, Sankar SA, Lagier J-C, Khelaifia S, Michele C et al. Genome sequence and description of Anaerosalibacter massiliensis sp. nov. New Microbes New Infect 2016; 10:66–76 [View Article][PubMed]
    [Google Scholar]
  43. Zhao G, Nyman M, Jönsson JA. Rapid determination of short-chain fatty acids in colonic contents and faeces of humans and rats by acidified water-extraction and direct-injection gas chromatography. Biomed Chromatogr 2006; 20:674–682 [View Article][PubMed]
    [Google Scholar]
  44. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article][PubMed]
    [Google Scholar]
  45. Tidjani Alou M, Khelaifia S, Michelle C, Andrieu C, Armstrong N et al. Anaerococcus rubiinfantis sp. nov., isolated from the gut microbiota of a Senegalese infant with severe acute malnutrition. Anaerobe 2016; 40:85–94 [View Article][PubMed]
    [Google Scholar]
  46. Gouret P, Paganini J, Dainat J, Louati D, Darbo E et al. Integration of evolutionary biology concepts for functional annotation and automation of complex research in evolution: the multi-agent software system DAGOBAH. In Pontarotti P. editor Evolutionary Biology – Concepts, Biodiversity, Macroevolution and Genome Evolution Berlin Heidelberg: Springer; 2011 pp 71–87
    [Google Scholar]
  47. Gouret P, Vitiello V, Balandraud N, Gilles A, Pontarotti P et al. FIGENIX: intelligent automation of genomic annotation: expertise integration in a new software platform. BMC Bioinformatics 2005; 6:1 [View Article]
    [Google Scholar]
  48. Auch AF, von Jan M, Klenk H-P, Göker M. Digital DNA–DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134 [View Article][PubMed]
    [Google Scholar]
  49. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article][PubMed]
    [Google Scholar]
  50. Rodriguez-R LM, Konstantinidis KT. Bypassing cultivation to identify bacterial species: culture-independent genomic approaches identify credibly distinct clusters, avoid cultivation bias, and provide true insights into microbial species. Microbe Mag 2014; 9:111–118
    [Google Scholar]
  51. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article][PubMed]
    [Google Scholar]
  52. Stackebrandt E, Ebers J. Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 2006; 33:152
    [Google Scholar]
  53. Kim M, Oh H-S, Park S-C, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article][PubMed]
    [Google Scholar]
  54. Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 2014; 12:635–645 [View Article][PubMed]
    [Google Scholar]
  55. Boone DR, Castenholz RW, Garrity GM. Bergey’s Manual of Systematic Bacteriology, 2nd ed. New York: Springer; 2001
    [Google Scholar]
  56. Kusano K, Yamada H, Niwa M, Yamasato K. Propionibacterium cyclohexanicum sp. nov., a new acid-tolerant ω-cyclohexyl fatty acid-containing Propionibacterium isolated from spoiled orange juice. Int J Syst Bacteriol 1997; 47:825–831 [View Article][PubMed]
    [Google Scholar]
  57. Lee DW, Lee SD. Tessaracoccus flavescens sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 2008; 58:785–789 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004106
Loading
/content/journal/ijsem/10.1099/ijsem.0.004106
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error