1887

Abstract

Cyanobacterial strain ARC8 was isolated from seepage coming into the river Dračice, Františkov, Czech Republic, and was characterized using a polyphasic approach. Strain ARC8 showed a typical -like morphology and in-depth morphological characterization indicated that it is a member of the genus . Furthermore, in the 16S rRNA gene phylogeny inferred using Bayesian inference, maximum likelihood and neighbour joining methods, strain ARC8 clustered within the clade. The phylogenetic distance and the positioning of strain ARC8 also indicated that it is a member of the genus . Furthermore, the L gene phylogeny along with the 16S–23S ITS secondary structure analysis also supported the findings from the 16S rRNA gene tree. In accordance with the International Code of Nomenclature for Algae, Fungi and Plants we describe a novel species of with the name sp. nov.

Funding
This study was supported by the:
  • Prashant Singh , Indian National Science Academy , (Award Intl/ASCR/2014/1558)
  • Prashant Singh , Science and Engineering Research Board , (Award YSS/2014/000879)
  • Not Applicable , Department of Biotechnology, Government of India , (Award BT/PR/0054/NDB/52/94/2007)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004102
2020-03-30
2020-06-04
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/4/2740.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004102&mimeType=html&fmt=ahah

References

  1. Bornet E, Flahault C. Revision des Nostocacées hétérocystées contenues dans les principaux herbiers de France (quatrième et dernier fragment). Ann des Sci Nat Bot 1888; 7:177–262
    [Google Scholar]
  2. Řeháková K, Johansen JR, Casamatta DA, Xuesong L, Vincent J. Morphological and molecular characterization of selected desert soil cyanobacteria: three species new to science including Mojavia pulchra gen. et sp. nov. Phycologia 2007; 46:481–502 [CrossRef]
    [Google Scholar]
  3. Hrouzek P, Lukešová A, Mareš J, Ventura S. Description of the cyanobacterial genus Desmonostoc gen. nov. including D. muscorum comb. nov. as a distinct, phylogenetically coherent taxon related to the genus Nostoc . Fottea 2013; 13:201–213 [CrossRef]
    [Google Scholar]
  4. Genuário DB, Vaz MGMV, Hentschke GS, Sant'Anna CL, Fiore MF. Halotia gen. nov., a phylogenetically and physiologically coherent cyanobacterial genus isolated from marine coastal environments. Int J Syst Evol Microbiol 2015; 65:663–675 [CrossRef]
    [Google Scholar]
  5. Bagchi SN, Dubey N, Singh P. Phylogenetically distant clade of Nostoc-like taxa with the description of Aliinostoc gen. nov. and Aliinostoc morphoplasticum sp. nov. Int J Syst Evol Microbiol 2017; 67:3329–3338 [CrossRef]
    [Google Scholar]
  6. Scotta Hentschke G, Johansen JR, Pietrasiak N, Rigonato J, Fiore MF et al. Komarekiella atlantica gen. et sp. nov. (Nostocaceae, Cyanobacteria): a new subaerial taxon from the Atlantic Rainforest and Kauai, Hawaii. Fottea 2017; 17:178–190 [CrossRef]
    [Google Scholar]
  7. Saraf AG, Dawda HG, Singh P. Desikacharya gen. nov., a phylogenetically distinct genus of cyanobacteria along with the description of two new species, Desikacharya nostocoides sp. nov. and Desikacharya soli sp. nov., and reclassification of Nostoc thermotolerans to Desikacharya thermotolerans comb. nov. Int J Syst Evol Microbiol 2019; 69:307–315 [CrossRef]
    [Google Scholar]
  8. Komárek J. Cyanoprokaryota. 3. In Büdel B, Gärtner G, Krienitz L. (editors) Süswasserflora von Mitteleuropa/Freshwater flora of Central Europe 1130 Heidelberg: Springer; 2013
    [Google Scholar]
  9. Komárek J, Anagnostidis K. Modern approach to the classification system of the cyanophytes 4. Nostocales. Algol Stud 1989; 56:247–345
    [Google Scholar]
  10. Hrouzek P, Ventura S, Lukešová A, Mugnai M, Angela Turicchia S, Maria M, Silvia AT et al. Diversity of soil Nostoc strains: phylogenetic and phenotypic variability. Algological studies (Algol Stud) 2005; 117:251–264 [CrossRef]
    [Google Scholar]
  11. Iteman I, Rippka R, Tandeau de Marsac N, Herdman M. rDNA analyses of planktonic heterocystous cyanobacteria, including members of the genera Anabaenopsis and Cyanospira . Microbiology 2002; 148:481–496 [CrossRef]
    [Google Scholar]
  12. Lyra C, Suomalainen S, Gugger M, Vezie C, Sundman P et al. Molecular characterization of Anabaena, Aphanizomenon, Microcystis and Planktothrix genera. Int J Syst Evol Microbiol 2001; 51:513–526 [CrossRef]
    [Google Scholar]
  13. Meeks JC, Elhai J, Thiel T, Potts M, Larimer F et al. An overview of the genome of Nostoc punctiforme, a multicellular, symbiotic cyanobacterium. Photosynth Res 2001; 70:85–106 [CrossRef]
    [Google Scholar]
  14. Rajaniemi P, Hrouzek P, Kastovská K, Willame R, Rantala A et al. Phylogenetic and morphological evaluation of the genera Anabaena, Aphanizomenon, Trichormus and Nostoc (Nostocales, Cyanobacteria). Int J Syst Evol Microbiol 2005; 55:11–26 [CrossRef]
    [Google Scholar]
  15. Singh P, Shaikh ZM, Gaysina LA, Suradkar A, Samanta U. New species of Nostoc (cyanobacteria) isolated from Pune, India using morphological, ecological and molecular attributes. Plant Syst Evol 2016; 302:1381–1394 [CrossRef]
    [Google Scholar]
  16. Rippka R, Stanier RY, Deruelles J, Herdman M, Waterbury JB. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Microbiology 1979; 111:1–61 [CrossRef]
    [Google Scholar]
  17. Desikachary TV. Cyanophyta. ICAR monographs on algae. New Delhi 1959
    [Google Scholar]
  18. Edwards U, Rogall T, Blöcker H, Emde M, Böttger EC et al. Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res 1989; 17:7843–7853 [CrossRef]
    [Google Scholar]
  19. Gkelis S, Rajaniemi P, Vardaka E, Moustaka-Gouni M, Lanaras T et al. Limnothrix redekei (Van Goor) Meffert (Cyanobacteria) strains from Lake Kastoria, Greece form a separate phylogenetic group. Microb Ecol 2005; 49:176–182 [CrossRef]
    [Google Scholar]
  20. Singh P, Fatma A, Mishra AK. Molecular phylogeny and evogenomics of heterocystous cyanobacteria using rbcL gene sequence data. Ann Microbiol 2015; 65:799–807 [CrossRef]
    [Google Scholar]
  21. Kim O-S, Cho Y-J, Lee K, Yoon S-H, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [CrossRef]
    [Google Scholar]
  22. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 2012; 61:539–542 [CrossRef]
    [Google Scholar]
  23. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [CrossRef]
    [Google Scholar]
  24. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [CrossRef]
    [Google Scholar]
  25. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [CrossRef]
    [Google Scholar]
  26. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [CrossRef]
    [Google Scholar]
  27. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011; 28:2731–2739 [CrossRef]
    [Google Scholar]
  28. Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 2003; 31:3406–3415 [CrossRef]
    [Google Scholar]
  29. Mollenhauer D. Beiträge zur Kenntnis der Gattung Nostoc, I. Abh Senckenb Naturf Ges 1970; 524:1–80
    [Google Scholar]
  30. Mollenhauer D, Bengtsson R, Lindstrøm E-A. Macroscopic cyanobacteria of the genus Nostoc: a neglected and endangered constituent of European inland aquatic biodiversity. Eur J Phycol 1999; 34:349–360 [CrossRef]
    [Google Scholar]
  31. Dodds WK, Gudder DA, Mollenhauer D. The ecology of Nostoc . J Phycol 1995; 31:2–18 [CrossRef]
    [Google Scholar]
  32. Singh RN, Tiwari DN. Induction by ultraviolet irradiation of mutation in the blue-green alga Nostoc linckia (Roth) Born. et Flah. Nature 1969; 221:62–64 [CrossRef][PubMed]
    [Google Scholar]
  33. Razdan K, Dikshit RP. Mutations affecting nitrogen fixation, oxygen sensitivity and filamentous branching in Nostoc muscorum . FEMS Microbiol Lett 1983; 17:261–263 [CrossRef]
    [Google Scholar]
  34. Mateo P, Perona E, Berrendero E, Leganés F, Martín M et al. Life cycle as a stable trait in the evaluation of diversity of Nostoc from biofilms in rivers. FEMS Microbiol Ecol 2011; 76:185–198 [CrossRef]
    [Google Scholar]
  35. Papaefthimiou D, Hrouzek P, Mugnai MA, Lukešová A, Turicchia S et al. Differential patterns of evolution and distribution of the symbiotic behaviour in nostocacean cyanobacteria. Int J Syst Evol Microbiol 2008; 58:553–564 [CrossRef]
    [Google Scholar]
  36. Lukešová A, Johansen JR, Martin MP, Casamatta DA. Aulosira bohemensis sp. nov.: further phylogenetic uncertainty at the base of the Nostocales (Cyanobacteria). Phycologia 2009; 48:118–129 [CrossRef]
    [Google Scholar]
  37. Genuário DB, Silva-Stenico ME, Welker M, Beraldo Moraes LA, Fiore MF. Characterization of a microcystin and detection of microcystin synthetase genes from a Brazilian isolate of Nostoc . Toxicon 2010; 55:846–854 [CrossRef]
    [Google Scholar]
  38. Genuário DB, Andreote APD, Vaz MGMV, Fiore MF. Heterocyte-forming cyanobacteria from Brazilian saline-alkaline lakes. Mol Phylogenet Evol 2017; 109:105–112 [CrossRef]
    [Google Scholar]
  39. Cai F, Li X, Geng R, Peng X, Li R. Phylogenetically distant clade of Nostoc-like taxa with the description of Minunostoc gen. nov. and Minunostoc cylindricum sp. nov. Fottea 2019; 19:13–24 [CrossRef]
    [Google Scholar]
  40. Gugger M, Lyra C, Henriksen P, Couté A, Humbert J-F et al. Phylogenetic comparison of the cyanobacterial genera Anabaena and Aphanizomenon . Int J Syst Evol Microbiol 2002; 52:1867–1880 [CrossRef]
    [Google Scholar]
  41. Lyra C, Laamanen M, Lehtimäki JM, Surakka A, Sivonen K. Benthic cyanobacteria of the genus Nodularia are non-toxic, without gas vacuoles, able to glide and genetically more diverse than planktonic Nodularia . Int J Syst Evol Microbiol 2005; 55:555–568 [CrossRef]
    [Google Scholar]
  42. Rudi K, Skulberg OM, Jakobsen KS. Evolution of cyanobacteria by exchange of genetic material among phyletically related strains. J Bacteriol 1998; 180:3453–3461 [CrossRef]
    [Google Scholar]
  43. Suradkar A, Villanueva C, Gaysina LA, Casamatta DA, Saraf A et al. Nostoc thermotolerans sp. nov., a soil-dwelling species of Nostoc (Cyanobacteria). Int J Syst Evol Microbiol 2017; 67:1296–1305 [CrossRef]
    [Google Scholar]
  44. Boyer SL, Flechtner VR, Johansen JR. Is the 16S-23S rRNA internal transcribed spacer region a good tool for use in molecular systematics and population genetics? A case study in cyanobacteria. Mol Biol Evol 2001; 18:1057–1069 [CrossRef]
    [Google Scholar]
  45. Boyer SL, Johansen JR, Flechtner VR, Howard GL. Phylogeny and genetic variance in terrestrial Microcoleus (Cyanophyceae) species based on sequence analysis of the 16S rRNA gene and associated 16S-23S its region. J Phycol 2002; 38:1222–1235 [CrossRef]
    [Google Scholar]
  46. González-Resendiz L, Johansen JR, León-Tejera H, Sánchez L, Segal-Kischinevzky C et al. A bridge too far in naming species: a total evidence approach does not support recognition of four species in Desertifilum (Cyanobacteria). J Phycol 2019; 55:898–911 [CrossRef]
    [Google Scholar]
  47. Dadheech PK, Abed RMM, Mahmoud H, Mohan MK, Krienitz L. Polyphasic characterization of cyanobacteria isolated from desert crusts, and the description of Desertifilum tharense gen. et sp. nov. (Oscillatoriales). Phycologia 2012; 51:260–270 [CrossRef]
    [Google Scholar]
  48. Pietrasiak N, Osorio-Santos K, Shalygin S, Martin MP, Johansen JR. When is a lineage a species? A case study in Myxacorys gen. nov. (Synechococcales: cyanobacteria) with the description of two new species from the Americas. J Phycol 2019; 55:976–996 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004102
Loading
/content/journal/ijsem/10.1099/ijsem.0.004102
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error