1887

Abstract

A moderately thermophilic, neutrophilic, aerobic, Gram-negative bacterium, strain 3729k, was isolated from a thermal spring of the Chukotka Peninsula, Arctic region, Russia. It grew chemoorganoheterotrophically, utilizing proteinaceous substrates, including highly rigid keratins as well as various polysaccharides (glucomannan, locust bean gum, gum guar and xanthan gum). The major fatty acids of strain 3729k were iso-C (60.9%), iso-C (12.0%), C (9.9%) and iso-C (7.4%). Isoprenoid quinones were Q-8 (95%) and Q-9 (5%). The major polar lipids were phosphatidylglycerol, phosphatidylethanolamine, phosphatidylmethylethanolamine and three unidentified polar lipids. Strain 3729k was inhibited by chloramphenicol, neomycin, novobiocin, kanamycin, tetracycline, ampicillin and polymyxin B, but resistant to rifampicin, vancomycin and streptomycin. At the same time, strain 3729k inhibited growth of and its genome possessed genes for antimicrobial activity against Gram-positive bacteria (a single putative bacteriocin and several secreted lysozymes and peptidoglycan lytic transglycosylases). The DNA G+C content was 69.8 mol%. 16S rRNA gene sequence-based phylogenetic analysis placed strain 3729k into a distinct species/genus-level branch within the family (). Phylogenetic analysis of 120 conservative protein sequences of all with validly published names and publicly available genomic sequences supported a species-level position of strain 3729k within the genus . Pairwise ANI values between strain 3729k and other species were of 75–80 %, supporting the proposal of a novel species. Accordingly, sp. nov., with the type strain 3729k (=VMK В−3232=DSM 105847), was proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004099
2020-03-16
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/4/2726.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004099&mimeType=html&fmt=ahah

References

  1. Kwon S-W, Kim B-Y, Weon H-Y, Baek Y-K, Go S-J. Arenimonas donghaensis gen. nov., sp. nov., isolated from seashore sand. Int J Syst Evol Microbiol 2007; 57:954–958 [View Article]
    [Google Scholar]
  2. Aslam Z, Park JH, Kim SW, Jeon CO, Chung YR. Arenimonas oryziterrae sp. nov., isolated from a field of rice (Oryza sativa L.) managed under a no-tillage regime, and reclassification of Aspromonas composti as Arenimonas composti comb. nov. Int J Syst Evol Microbiol 2009; 59:2967–2972 [View Article]
    [Google Scholar]
  3. Zhang S-Y, Xiao W, Xia Y-S, Wang Y-X, Cui X-L et al. Arenimonas taoyuanensis sp. nov., a novel bacterium isolated from rice-field soil in China. Antonie Van Leeuwenhoek 2015; 107:1181–1187 [View Article]
    [Google Scholar]
  4. Young C-C, Kämpfer P, Ho M-J, Busse H-J, Huber BE et al. Arenimonas malthae sp. nov., a gammaproteobacterium isolated from an oil-contaminated site. Int J Syst Evol Microbiol 2007; 57:2790–2793 [View Article]
    [Google Scholar]
  5. Kanjanasuntree R, Kim J-H, Yoon J-H, Sukhoom A, Kantachote D et al. Arenimonas halophila sp. nov., isolated from soil. Int J Syst Evol Microbiol 2018; 68:2188–2193 [View Article]
    [Google Scholar]
  6. Zhu J, Wang H-M, Zhang Q, Dong W-W, Kong D-L et al. Arenimonas alkanexedens sp. nov., isolated from a frozen soil sample. Antonie Van Leeuwenhoek 2017; 110:1027–1034 [View Article]
    [Google Scholar]
  7. Xu L, Sun J-Q, Liu X, Liu X-Z, Qiao M-Q et al. Arenimonas soli sp. nov., isolated from saline-alkaline soil. Int J Syst Evol Microbiol 2017; 67:2829–2833 [View Article]
    [Google Scholar]
  8. Han DM, Chun BH, Kim HM, Khan SA, Jeon CO. Arenimonas terrae sp. nov., isolated from orchard soil. Int J Syst Evol Microbiol 2020; 70:537–542 [View Article]
    [Google Scholar]
  9. Kim A-R, Lee S, Han K, Ahn T-Y. Arenimonas aquatica [corrected] sp. nov., a member of the gammaproteobacterium, isolated from a freshwater reservoir. J Microbiol 2012; 50:354–358 [View Article]
    [Google Scholar]
  10. Yuan X, Nogi Y, Tan X, Zhang R-G, Lv J. Arenimonas maotaiensis sp. nov., isolated from fresh water. Int J Syst Evol Microbiol 2014; 64:3994–4000 [View Article]
    [Google Scholar]
  11. Makk J, Homonnay ZG, Kéki Z, Nemes-Barnás K, Márialigeti K et al. Arenimonas subflava sp. nov., isolated from a drinking water network, and emended description of the genus Arenimonas. Int J Syst Evol Microbiol 2015; 65:1915–1921 [View Article]
    [Google Scholar]
  12. Huy H, Jin L, Lee Y-K, Lee KC, Lee J-S et al. Arenimonas daechungensis sp. nov., isolated from the sediment of a eutrophic reservoir. Int J Syst Evol Microbiol 2013; 63:484–489 [View Article]
    [Google Scholar]
  13. Jeong HI, Jin HM, Jeon CO. Arenimonas aestuarii sp. nov., isolated from estuary sediment. Int J Syst Evol Microbiol 2016; 66:1527–1532 [View Article]
    [Google Scholar]
  14. Chen F, Shi Z, Wang G. Arenimonas metalli sp. nov., isolated from an iron mine. Int J Syst Evol Microbiol 2012; 62:1744–1749 [View Article]
    [Google Scholar]
  15. Jin L, Kim KK, Im W-T, Yang H-C, Lee S-T. Aspromonas composti gen. nov., sp. nov., a novel member of the family Xanthomonadaceae . Int J Syst Evol Microbiol 2007; 57:1876–1880 [View Article]
    [Google Scholar]
  16. Jin L, Kim KK, An K-G, Oh H-M, Lee S-T. Arenimonas daejeonensis sp. nov., isolated from compost. Int J Syst Evol Microbiol 2012; 62:1674–1678 [View Article]
    [Google Scholar]
  17. Liu H, Ren L, Lu P, Sun L, Zhu G. Arenimonas caeni sp. nov., isolated from activated sludge. Int J Syst Evol Microbiol 2018; 68:2996–3000 [View Article]
    [Google Scholar]
  18. Kochetkova TV, Zayulina KS, Zhigarkov VS, Minaev NV, Chichkov BN et al. Tepidiforma bonchosmolovskayae gen. nov., sp. nov., a moderately thermophilic Chloroflexi bacterium from a Chukotka hot spring (Arctic, Russia), representing a novel class, Tepidiformia, which includes the previously uncultivated lineage OLB14. Int J Syst Evol Microbiol 2020; 70:1192–1202 [View Article]
    [Google Scholar]
  19. Stieglmeier M, Klingl A, Alves RJE, Rittmann SK-MR, Melcher M et al. Nitrososphaera viennensis gen. nov., sp. nov., an aerobic and mesophilic, ammonia-oxidizing archaeon from soil and a member of the archaeal phylum Thaumarchaeota . Int J Syst Evol Microbiol 2014; 64:2738–2752 [View Article]
    [Google Scholar]
  20. Wolin EA, Wolin MJ, Wolfe RS. Formation of methane by bacterial extracts. J Biol Chem 1963; 238:2882–2886
    [Google Scholar]
  21. Kevbrin VV, Zavarzin GA. The influence of sulfur compounds on the growth of halophilic homoacetic bacterium Acetohalobium arabaticum . Microbiology 1992; 61:563–571
    [Google Scholar]
  22. Slobodkina GB, Panteleeva AN, Kostrikina NA, Kopitsyn DS, Bonch-Osmolovskaya EA et al. Tepidibacillus fermentans gen. nov., sp. nov.: a moderately thermophilic anaerobic and microaerophilic bacterium from an underground gas storage. Extremophiles 2013; 17:833–839 [View Article]
    [Google Scholar]
  23. Frolov EN, Kublanov IV, Toshchakov SV, Samarov NI, Novikov AA et al. Thermodesulfobium acidiphilum sp. nov., a thermoacidophilic, sulfate-reducing, chemoautotrophic bacterium from a thermal site. Int J Syst Evol Microbiol 2017; 67:1482–1485 [View Article]
    [Google Scholar]
  24. Park D. Genomic DNA isolation from different biological materials. In Hilario E, Mackay J. (editors) Methods in Molecular Biology, 2007, ver. 353: Protocols for Nucleic Acid Analysis by Nonradioactive Probes, 2nd edn. Totowa, NJ: Humana Press Inc; 2007 pp 3–13
    [Google Scholar]
  25. Katoh K, Rozewicki J, Yamada KD. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform 2019; 20:1160–1166 [View Article]
    [Google Scholar]
  26. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article]
    [Google Scholar]
  27. Nei M, Kumar S, Evolution M. Phylogenetics Oxford: Oxford University Press; 2000
    [Google Scholar]
  28. Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol 2018; 36:996–1004 [View Article]
    [Google Scholar]
  29. Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 2000; 17:540–552 [View Article]
    [Google Scholar]
  30. Price MN, Dehal PS, Arkin AP. FastTree 2--approximately maximum-likelihood trees for large alignments. PLoS One 2010; 5:e9490 [View Article]
    [Google Scholar]
  31. Letunic I, Bork P. Interactive tree of life (iTOL) V4: recent updates and new developments. Nucleic Acids Res 2019; 47:W256–W259 [View Article]
    [Google Scholar]
  32. Pritchard L, Glover RH, Humphris S, Elphinstone JG, Toth IK. Genomics and taxonomy in diagnostics for food security: soft-rotting enterobacterial plant pathogens. Anal Methods 2016; 8:12–24 [View Article]
    [Google Scholar]
  33. Rodriguez-R L, Konstantinidis K. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. PeerJ Prepr 2016
    [Google Scholar]
  34. Marchler-Bauer A, Bryant SH. CD-Search: protein domain annotations on the fly. Nucleic Acids Res 2004; 32:W327–W331 [View Article]
    [Google Scholar]
  35. Kluskens LD, Voorhorst WGB, Siezen RJ, Schwerdtfeger RM, Antranikian G et al. Molecular characterization of fervidolysin, a subtilisin-like serine protease from the thermophilic bacterium Fervidobacterium pennivorans. Extremophiles 2002; 6:185–194 [View Article]
    [Google Scholar]
  36. Blin K, Shaw S, Steinke K, Villebro R, Ziemert N et al. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 2019; 47:W81–W87 [View Article]
    [Google Scholar]
  37. Zhang H, Yohe T, Huang L, Entwistle S, Wu P et al. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res 2018; 46:W95–W101 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004099
Loading
/content/journal/ijsem/10.1099/ijsem.0.004099
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error