1887

Abstract

Four strains assigned the names FT13W, FT14W, FT58W and FT68W were isolated from a subtropical stream in PR China. All the strains were Gram-stain-negative, catalase- and oxidase-positive, rod-shaped and motile with flagella. Comparisons based on 16S rRNA gene sequences showed that strains FT13W, FT14W, FT58W and FT68W belonged to genus and shared 16S rRNA gene similarities in the range of 98.8–99.7 % with DSM 1522, DSM 9628 and ‘ JA-1', respectively. The calculated pairwise average nucleotide identity (ANI) values among the genomes of above seven strains were in the range of 79.0–92.2 %, except that the ANI value was 96.8 % between strain FT13W and FT14W. The respiratory quinone of strains FT13W, FT14W, FT58W and FT68W was determined to be Q-8. The major fatty acids were C ω7, C, C ω7 and C. The polar lipids included phosphatidylethanolamine, phosphatidylglycerol and one unidentified phospholipid. The genome sizes of strains FT13W, FT14W, FT58W and FT68W were 6.45, 6.38, 5.73 and 6.37 Mbp with G+C contents of 63.4, 63.7, 61.6 and 63.1 mol%, respectively. Combining phenotypic, biochemical, genotypic and ANI data, strain FT13W and FT14W should belong to the same species. The four strains were considered to represent three novel species within genus , for which the names sp. nov. (type strain FT13W=GDMCC 1.1638=KACC 21319), sp. nov. (FT58W=GDMCC 1.1676=KACC 21468) and sp. nov. (FT68W=GDMCC 1.1677=KACC 21469) are proposed.

Funding
This study was supported by the:
  • Guangdong MEPP Fund (Award NO. GDOE(2019)A34)
    • Principle Award Recipient: Meiying Xu
  • GDAS’ Special Project of Science and Technology Development (Award 2019GDASYL-0301002)
    • Principle Award Recipient: Meiying Xu
  • Guangdong Provincial Programs for Science and Technology Development (Award 2019B110205004; 2018B020205003; 2018B030324002)
    • Principle Award Recipient: Meiying Xu
  • National Natural Science Foundation of China (Award 91851202, 51678163)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004097
2020-03-16
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/4/2719.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004097&mimeType=html&fmt=ahah

References

  1. De Ley J, Segers P, Gillis M. Intra and intergeneric similarities of Chromobacterium and Janthinobacterium ribosomal ribonucleicacid cistrons. Int J Syst Bacteriol 1978; 25:154–168
    [Google Scholar]
  2. Lincoln SP, Fermor TR, Tindall BJ. Janthinobacterium agaricidamnosum sp. nov., a soft rot pathogen of Agaricus bisporus . Int J Syst Bacteriol 1999; 49:1577–1589 [View Article]
    [Google Scholar]
  3. Ambrožič Avguštin J, Žgur Bertok D, Kostanjšek R, Avguštin G. Isolation and characterization of a novel violacein-like pigment producing psychrotrophic bacterial species Janthinobacterium svalbardensis sp. nov. Antonie Van Leeuwenhoek 2013; 103:763–769 [View Article]
    [Google Scholar]
  4. Baldani JI, Rouws L, Cruz LM, Olivares FL, Schmid M. The Family Oxalobacteraceae . In Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F. (editors) The Prokaryotes: Alphaproteobacteria and Betaproteobacteria Berlin, Heidelberg: Springer Berlin Heidelberg; 2014 pp 919–974
    [Google Scholar]
  5. Mata JA, Martínez-Cánovas J, Quesada E, Béjar V. A detailed phenotypic characterisation of the type strains of Halomonas species. Syst Appl Microbiol 2002; 25:360–375 [View Article]
    [Google Scholar]
  6. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic acid sequencing techniques in bacterial systematics New York, USA: Wiley; 1991 pp 115–175
    [Google Scholar]
  7. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article]
    [Google Scholar]
  8. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215:403–410 [View Article]
    [Google Scholar]
  9. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article]
    [Google Scholar]
  10. Kimura M. The neutral theory of molecular evolution. Sci Am 1979; 241:98–126 [View Article]
    [Google Scholar]
  11. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article]
    [Google Scholar]
  12. Kluge AG, Farris JS. Quantitative phyletics and the evolution of Anurans . Syst Zool 1969; 18:1–32 [View Article]
    [Google Scholar]
  13. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article]
    [Google Scholar]
  14. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 1870; 2016:33
    [Google Scholar]
  15. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article]
    [Google Scholar]
  16. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article]
    [Google Scholar]
  17. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 2017; 110:1281–1286 [View Article]
    [Google Scholar]
  18. Richter M, Rosselló-Móra R, Michael R, Ramon RM. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article]
    [Google Scholar]
  19. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article]
    [Google Scholar]
  20. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the AD hoc Committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987; 37:463–464 [View Article]
    [Google Scholar]
  21. Dong XZ, Cai MY. Determinative manual for routine bacteriology Beijing, China: Beijing Scientific Press; 2001
    [Google Scholar]
  22. Lu HB, Xing P, Phurbu D, Tang Q, Wu QL. Pelagibacterium montanilacus sp. nov., an alkaliphilic bacterium isolated from lake Cuochuolong on the Tibetan Plateau. Int J Syst Evol Microbiol 2018; 68:2220–2225 [View Article]
    [Google Scholar]
  23. Ventosa A, Quesada E, Rodriguez-Valera F, Ruiz-Berraquero F, Ramos-Cormenzana A. Numerical taxonomy of moderately halophilic gram-negative rods. J Gen Microbiol 1982; 128:1959–1968 [View Article]
    [Google Scholar]
  24. Zhong ZP, Liu Y, Wang F, Zhou YG, Liu HC et al. Lacimicrobium alkaliphilum gen. nov., sp. nov., a member of the family Alteromonadaceae isolated from a salt lake. Int J Syst Evol Microbiol 2016; 66:422–429 [View Article]
    [Google Scholar]
  25. Kuykendall LD, Roy MA, O'Neill JJ, Devine TE. Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum . Int J Syst Bacteriol 1988; 38:358–361 [View Article]
    [Google Scholar]
  26. Sasser M. Identification of bacteria through fatty acid analysis. In Klement Z, Rudolph K, Sands DC. (editors) Methods in Phytobacteriology Budapest, Hungary: Akademiai Kaido; 1990 pp 199–204
    [Google Scholar]
  27. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  28. Tindall BJ. Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 1990; 66:199–202 [View Article]
    [Google Scholar]
  29. Austin DA, Moss MO. Numerical taxonomy of red-pigmented bacteria isolated from a lowland river, with the description of a new taxon, Rugamonas rubra gen. nov., sp. nov. J Gen Microbiol 1986; 132:1899–1909 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004097
Loading
/content/journal/ijsem/10.1099/ijsem.0.004097
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error