1887

Abstract

A Gram-stain-positive, motile, rod-shaped bacterium, designated strain LAM7113, was isolated from soil sample collected from a birch forest in Xinjiang Uygur Autonomous Region, PR China. Strain LAM7113 grew optimally at pH 8.0, 30 °C and in the presence of 1.0 % NaCl (w/v). Phylogenetic analysis based on 16S rRNA gene sequences showed that strain LAM7113 was closely related to members of the genus , with the highest similarity to Back-11 (96.2 %). The genomic DNA G+C content was 43.4 mol%. The values of average nucleotide identity and DNA–DNA hybridization were 66.1 and 27.0 %, respectively, by comparing the draft genome sequences of strain LAM7113 and Back-11. Anteiso-C and iso-C were identified as the major cellular fatty acids. Menaquinone-7 was detected as the predominant respiratory quinone. The major polar lipids were found to be diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol, three unidentified aminophospholipids, three unidentified glycolipids, one unidentified phospholipid and two unknown polar lipids. Based on its phenotypic, phylogenetic and chemotaxonomic characteristics, strain LAM7113 is proposed to represent a novel species of the genus with the name sp. nov. The type strain is LAM7113 (=CGMCC 1.16619=JCM 32513).

Funding
This study was supported by the:
  • National Natural Science Foundation of China (Award NSFC, No. 31670006)
    • Principle Award Recipient: Zhiyong Ruan
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004093
2020-04-15
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/4/2690.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004093&mimeType=html&fmt=ahah

References

  1. Ash C, Priest FG, Collins MD. Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus . Antonie Van Leeuwenhoek 1993; 64:253–260 [View Article]
    [Google Scholar]
  2. Parte AC. LPSN - List of Prokaryotic names with Standing in Nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol 2018; 68:1825–1829 [View Article]
    [Google Scholar]
  3. Lee J-S, Lee KC, Chang Y-H, Hong SG, Oh HW et al. Paenibacillus daejeonensis sp. nov., a novel alkaliphilic bacterium from soil. Int J Syst Evol Microbiol 2002; 52:2107–2111 [View Article]
    [Google Scholar]
  4. Akaracharanya A, Lorliam W, Tanasupawat S, Lee KC, Lee J-S et al. Paenibacillus cellulositrophicus sp. nov., a cellulolytic bacterium from Thai soil. Int J Syst Evol Microbiol 2009; 59:2680–2684 [View Article]
    [Google Scholar]
  5. Kim J-H, Kang H, Kim W. Paenibacillus doosanensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 2014; 64:1271–1277 [View Article]
    [Google Scholar]
  6. Kim D-uk, Kim S-G, Lee H, Chun J, Cho J-C et al. Paenibacillus xanthinilyticus sp. nov., isolated from agricultural soil. Int J Syst Evol Microbiol 2015; 65:2937–2942 [View Article]
    [Google Scholar]
  7. Baik KS, Choe HN, Park SC, Kim EM, Seong CN. Paenibacillus wooponensis sp. nov., isolated from wetland freshwater. Int J Syst Evol Microbiol 2011; 61:2763–2768 [View Article]
    [Google Scholar]
  8. Bae J-Y, Kim K-Y, Kim J-H, Lee K, Cho J-C et al. Paenibacillus aestuarii sp. nov., isolated from an estuarine wetland. Int J Syst Evol Microbiol 2010; 60:644–647 [View Article]
    [Google Scholar]
  9. Clermont D, Gomard M, Hamon S, Bonne I, Fernandez J-C et al. Paenibacillus faecis sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 2015; 65:4621–4626 [View Article]
    [Google Scholar]
  10. Chen X-R, Shao C-B, Wang Y-W, He M-X, Ma K-D et al. Paenibacillus vini sp. nov., isolated from alcohol fermentation pit mud in Sichuan Province, China. Antonie Van Leeuwenhoek 2015; 107:1429–1436 [View Article]
    [Google Scholar]
  11. Guo X, Zhou S, Wang Y-W, Wang H-M, Kong D-L et al. Paenibacillus salinicaeni sp. nov., isolated from saline silt sample. Antonie Van Leeuwenhoek 2016; 109:721–728 [View Article]
    [Google Scholar]
  12. Chou J-H, Chou Y-J, Lin K-Y, Sheu S-Y, Sheu D-S et al. Paenibacillus fonticola sp. nov., isolated from a warm spring. Int J Syst Evol Microbiol 2007; 57:1346–1350 [View Article]
    [Google Scholar]
  13. Lee KC, Kim KK, Kim J-S, Kim D-S, Ko S-H et al. Paenibacillus baekrokdamisoli sp. nov., isolated from soil of crater lake. Int J Syst Evol Microbiol 2016; 66:1937–1942 [View Article]
    [Google Scholar]
  14. Han T-Y, Tong X-M, Wang Y-W, Wang H-M, Chen X-R et al. Paenibacillus populi sp. nov., a novel bacterium isolated from the rhizosphere of Populus alba. Antonie Van Leeuwenhoek 2015; 108:659–666 [View Article]
    [Google Scholar]
  15. Son J-S, Kang H-U, Ghim S-Y. Paenibacillus dongdonensis sp. nov., isolated from rhizospheric soil of Elymus tsukushiensis . Int J Syst Evol Microbiol 2014; 64:2865–2870 [View Article]
    [Google Scholar]
  16. Zhang L, Gao J-S, Zhang S, Ali Sheirdil R, Wang X-C et al. Paenibacillus rhizoryzae sp. nov., isolated from rice rhizosphere. Int J Syst Evol Microbiol 2015; 65:3053–3059 [View Article]
    [Google Scholar]
  17. Yang D, Cha S, Choi J, Seo T. Paenibacillus mobilis sp. nov., a Gram-stain-negative bacterium isolated from soil. Int J Syst Evol Microbiol 2018; 68:1140–1145 [View Article]
    [Google Scholar]
  18. Ruan Z, Wang Y, Song J, Jiang S, Wang H et al. Kurthia huakuii sp. nov., isolated from biogas slurry, and emended description of the genus Kurthia . Int J Syst Evol Microbiol 2014; 64:518–521 [View Article]
    [Google Scholar]
  19. Wang X, Wang Y, Yang X, Sun H, Li B et al. Photobacterium alginatilyticum sp. nov., a marine bacterium isolated from bottom seawater. Int J Syst Evol Microbiol 2017; 67:1912–1917 [View Article]
    [Google Scholar]
  20. Skerman VBD. A Guide to the Identification of the Genera of Bacteria, 2nd edn. Baltimore: Williams & Wilkins; 1967
    [Google Scholar]
  21. Shi X-L, Wu Y-H, Jin X-B, Wang C-S, Xu X-W. Alteromonas lipolytica sp. nov., a poly-beta-hydroxybutyrate-producing bacterium isolated from surface seawater. Int J Syst Evol Microbiol 2017; 67:237–242 [View Article]
    [Google Scholar]
  22. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp 607–654
    [Google Scholar]
  23. Sakamoto M, Suzuki M, Umeda M, Ishikawa I, Benno Y. Reclassification of Bacteroides forsythus (Tanner et al. 1986) as Tannerella forsythensis corrig., gen. nov., comb. nov. Int J Syst Evol Microbiol 2002; 52:841–849 [View Article]
    [Google Scholar]
  24. Lechevalier MP, Lechevalier HA. The chemotaxonomy of actinomycetes. Actinomycete Taxonomy SIM Special Publication no. 6; 1980 pp 27–291
    [Google Scholar]
  25. MacKenzie SL. Gas chromatographic analysis of amino acids as the N-heptafluorobutyryl isobutyl esters. J Assoc Off Anal Chem 1987; 70:151–160 [View Article]
    [Google Scholar]
  26. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  27. Xu X-W, Huo Y-Y, Wang C-S, Oren A, Cui H-L et al. Pelagibacterium halotolerans gen. nov., sp. nov. and Pelagibacterium luteolum sp. nov., novel members of the family Hyphomicrobiaceae . Int J Syst Evol Microbiol 2011; 61:1817–1822 [View Article]
    [Google Scholar]
  28. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173:697–703 [View Article]
    [Google Scholar]
  29. Marmur J. A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 1961; 3:208–IN1 [View Article]
    [Google Scholar]
  30. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article]
    [Google Scholar]
  31. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article]
    [Google Scholar]
  32. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article]
    [Google Scholar]
  33. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article]
    [Google Scholar]
  34. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  35. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article]
    [Google Scholar]
  36. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article]
    [Google Scholar]
  37. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article]
    [Google Scholar]
  38. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J et al. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 2017; 110:1281–1286 [View Article]
    [Google Scholar]
  39. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article]
    [Google Scholar]
  40. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. Dna-Dna hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article]
    [Google Scholar]
  41. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004093
Loading
/content/journal/ijsem/10.1099/ijsem.0.004093
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error