1887

Abstract

From a phlegmon in a dog an aerobic and facultatively anaerobic, indole-, oxidase- and catalase-negative, non-motile bacterium was isolated in 2019 in Germany that stained Gram-negative and showed a pleomorphic, rod-shaped, non-spore-forming appearance. Based on the results of 16S rRNA gene sequence analyses, strain IHIT1603-19 was assigned to the genus with sequence similarities of 98.6, 98.0, 97.9, 97.1 and 94.4 % to the type strains of , , , and , respectively. Strain IHIT1603-19 could also clearly be differentiated from other species by , and gene, nucleotide and amino acid sequence analyses as well as by core genome phylogeny. Regarding DNA–DNA relatedness, strain IHIT1603-19 demonstrated an average nucleotide identity of 83.00 and 82.28 % compared to 131000547 and DSM 12112, respectively. Chemotaxonomic and physiological data of strain IHIT1603-19 were in congruence with other closely related members of the family , represented by highly similar enzyme profiles and fatty acid patterns. MALDI-TOF MS analysis also proved suitable in unequivocally discriminating strain IHIT1603-19 from all currently described taxa of the genus . On the basis of these data, we propose the novel species sp. nov. with the type strain IHIT1603-19 (=DSM 110501=CCUG 74118=CIP 111795). The G+C content of the DNA of the type strain is 26.6 mol%, genome size is 1.60 Mbp.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004086
2020-03-25
2020-04-01
Loading full text...

Full text loading...

References

  1. Levaditi C, Nicolau S, Poincloux P. Sur le rôle étiologique de Streptobacillus moniliformis (nov. spec.) dans l'érythème polymorphe aigu septicémique [in French]. C R Acad Sci 1925; 180:1188–1190
    [Google Scholar]
  2. Elliott SP. Rat bite fever and Streptobacillus moniliformis. Clin Microbiol Rev 2007; 20:13–22 [CrossRef][PubMed]
    [Google Scholar]
  3. Eisenberg T, Poignant S, Jouan Y, Fawzy A, Nicklas W et al. Acute tetraplegia caused by rat bite fever in snake keeper and transmission of Streptobacillus moniliformis. Emerg Infect Dis 2017; 23:719–721 [CrossRef][PubMed]
    [Google Scholar]
  4. Eisenberg T. Phylogenetic Investigations and Comparative Genome Analyses Within the Family Leptotrichiaceae with Special Consideration of Streptobacillus Moniliformis, the Causative Organism of Rat Bite Fever Giessen: Justus-Liebig-University; 2017
    [Google Scholar]
  5. Woo PCY, Wu AKL, Tsang C-C, Leung K-W, Ngan AHY et al. Streptobacillus hongkongensis sp. nov., isolated from patients with quinsy and septic arthritis, and emended descriptions of the genus Streptobacillus and Streptobacillus moniliformis. Int J Syst Evol Microbiol 2014; 64:3034–3039 [CrossRef][PubMed]
    [Google Scholar]
  6. Eisenberg T, Glaeser S, Nicklas W, Mauder N, Contzen M et al. Streptobacillus felis sp. nov. isolated from a cat with pneumonia. Int J Syst Evol Microbiol 2015; 65:2172–2178
    [Google Scholar]
  7. Eisenberg T, Nesseler A, Nicklas W, Spamer V, Seeger H et al. Streptobacillus sp. isolated from a cat with pneumonia. JMMCR 2014; 2014:1–7
    [Google Scholar]
  8. Eisenberg T, Glaeser SP, Ewers C, Semmler T, Nicklas W et al. Streptobacillus notomytis sp. nov., isolated from a spinifex hopping mouse (Notomys alexis Thomas, 1922), and emended description of Streptobacillus Levaditi et al. 1925, Eisenberg et al. 2015 emend. Int J Syst Evol Microbiol 2015; 65:4823–4829 [CrossRef][PubMed]
    [Google Scholar]
  9. Eisenberg T, Imaoka K, Kimura M, Glaeser SP, Ewers C et al. Streptobacillus ratti sp. nov. isolated from a black rat (Rattus rattus) Int J Syst Evol Microbiol 2016; 66:1620–1626
    [Google Scholar]
  10. Ogawa Y, Kasahara K, Lee S-T, Ito T, Hasegawa H et al. Rat-bite fever in human with Streptobacillus notomytis infection, Japan. Emerg Infect Dis 2018; 24:1377–1379 [CrossRef][PubMed]
    [Google Scholar]
  11. Fukushima K, Yanagisawa N, Imaoka K, Kimura M, Imamura A. Rat-bite fever due to Streptobacillus notomytis isolated from a human specimen. J Infect Chemother 2018; 24:302-304 [CrossRef][PubMed]
    [Google Scholar]
  12. Lau SKP, Chan JFW, Tsang C-C, Chan S-M, Ho M-L et al. Human oropharynx as natural reservoir of Streptobacillus hongkongensis. Sci Rep 2016; 6:24419 [CrossRef][PubMed]
    [Google Scholar]
  13. Maynard JH, McNaughton WM, Travis T. Streptobacillus moniliformis cellulitis and bacteraemia following a dog bite. Commun Dis Intell 1986; 10:
    [Google Scholar]
  14. Peel MM. Dog-associated bacterial infections in humans: isolates submitted to an Australian reference laboratory, 1981–1992. Pathol 1993; 25:379–384 [CrossRef]
    [Google Scholar]
  15. Wouters EGH, Ho HTK, Lipman LJA, Gaastra W. Dogs as vectors of Streptobacillus moniliformis infection?. Vet Microbiol 2008; 128:419–422 [CrossRef][PubMed]
    [Google Scholar]
  16. Das AM. Streptobacillus moniliformis isolated from an abscess of a dog. Ind J Comp Microbiol Immunol Infect Dis 1986; 7:115
    [Google Scholar]
  17. Ditchfield J, Lord LH, McKay KA. Streptobacillus moniliformis infection in a dog. Can Vet J 1961; 2:457–459[PubMed]
    [Google Scholar]
  18. Xenoulis PG, Palculict B, Allenspach K, Steiner JM, Van House AM et al. Molecular-phylogenetic characterization of microbial communities imbalances in the small intestine of dogs with inflammatory bowel disease. FEMS Microbiol Ecol 2008; 66:579–589 [CrossRef][PubMed]
    [Google Scholar]
  19. Dewhirst FE, Klein EA, Thompson EC, Blanton JM, Chen T et al. The canine oral microbiome. PLoS One 2012; 7:e36067 [CrossRef][PubMed]
    [Google Scholar]
  20. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [CrossRef][PubMed]
    [Google Scholar]
  21. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [CrossRef][PubMed]
    [Google Scholar]
  22. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [CrossRef][PubMed]
    [Google Scholar]
  23. Nei M, Kumar S. Molecular Evolution and Phylogenetics New York: Oxford University Press; 2000
    [Google Scholar]
  24. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  25. Brosius J, Palmer ML, Kennedy PJ, Noller HF. Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc Natl Acad Sci USA 1978; 75:4801–4805 [CrossRef][PubMed]
    [Google Scholar]
  26. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  27. Kimura M, Tanikawa T, Suzuki M, Koizumi N, Kamiyama T et al. Detection of Streptobacillus spp. in feral rats by specific polymerase chain reaction. Microbiol Immunol 2008; 52:9–15 [CrossRef][PubMed]
    [Google Scholar]
  28. Rohde J, Rapsch C, Fehr M. Case report: Abscessation due to Streptobacillus moniliformis in a rat [in German]. Prakt Tierarzt 2008; 89:466–473
    [Google Scholar]
  29. Eisenberg T, Nicklas W, Mauder N, Rau J, Contzen M et al. Phenotypic and genotypic characteristics of members of the genus Streptobacillus. PLoS One 2015; 10:e0134312 [CrossRef][PubMed]
    [Google Scholar]
  30. Glaeser SP, Kämpfer P. Multilocus sequence analysis (MLSA) in prokaryotic taxonomy. Syst Appl Microbiol 2015; 38:237–245 [CrossRef][PubMed]
    [Google Scholar]
  31. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22:4673–4680 [CrossRef][PubMed]
    [Google Scholar]
  32. Jones DT, Taylor WR, Thornton JM. The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 1992; 8:275–282 [CrossRef][PubMed]
    [Google Scholar]
  33. Palmer M, Venter SN, McTaggart AR, Coetzee MPA, Van Wyk S et al. The synergistic effect of concatenation in phylogenomics: the case in Pantoea. PeerJ 2019; 7:e6698 [CrossRef][PubMed]
    [Google Scholar]
  34. Edgar RC. Muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [CrossRef][PubMed]
    [Google Scholar]
  35. Price MN, Dehal PS, Arkin AP. FastTree 2-approximately maximum-likelihood trees for large alignments. PLoS One 2010; 5:e9490 [CrossRef][PubMed]
    [Google Scholar]
  36. Blom J, Kreis J, Spänig S, Juhre T, Bertelli C et al. EDGAR 2.0: an enhanced software platform for comparative gene content analyses. Nucleic Acids Res 2016; 44:W22–W28 [CrossRef][PubMed]
    [Google Scholar]
  37. Zhou Y, Liang Y, Lynch KH, Dennis JJ, Wishart DS. PHAST: a fast phage search tool. Nucleic Acids Res 2011; 39:W347–W352 [CrossRef][PubMed]
    [Google Scholar]
  38. Benson G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 1999; 27:573–580 [CrossRef][PubMed]
    [Google Scholar]
  39. Grissa I, Vergnaud G, Pourcel C. CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res 2007; 35:W52–W57 [CrossRef][PubMed]
    [Google Scholar]
  40. Eisenberg T, Fawzy A, Nicklas W, Semmler T, Ewers C. Phylogenetic and comparative genomics of the family Leptotrichiaceae and introduction of a novel fingerprinting MLVA for Streptobacillus moniliformis. BMC Genomics 2016; 17:864 [CrossRef][PubMed]
    [Google Scholar]
  41. Bertelli C, Laird MR, Williams KP. Simon Fraser University research computing G, Lau by, et al. IslandViewer 4: expanded prediction of genomic islands for larger-scale datasets. Nucleic Acids Res 2017; 45:W30–W35
    [Google Scholar]
  42. Cosentino S, Voldby Larsen M, Møller Aarestrup F, Lund O. PathogenFinder--distinguishing friend from foe using bacterial whole genome sequence data. PLoS One 2013; 8:e77302 [CrossRef][PubMed]
    [Google Scholar]
  43. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [CrossRef][PubMed]
    [Google Scholar]
  44. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [CrossRef][PubMed]
    [Google Scholar]
  45. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [CrossRef][PubMed]
    [Google Scholar]
  46. Eisenberg T, Ewers C, Rau J, Akimkin V, Nicklas W. Approved and novel strategies in diagnostics of rat bite fever and other Streptobacillus infections in humans and animals. Virulence 2016; 7:630–648 [CrossRef][PubMed]
    [Google Scholar]
  47. Rau J, Eisenberg T, Peters M, Berger A, Kutzer P et al. Reliable differentiation of a non-toxigenic tox gene-bearing Corynebacterium ulcerans variant frequently isolated from game animals using MALDI-TOF MS. Vet Microbiol 2019; 237:108399 [CrossRef][PubMed]
    [Google Scholar]
  48. Rau J, Eisenberg T, Männig A, Wind C, Lasch P et al. MALDI-UP – An internet platform for the exchange of MALDI-TOF mass spectra. User guide for http://maldi-up.ua-bw.de/. Aspects of Food Control and Animal Health 2016; 2016(1:1–17
    [Google Scholar]
  49. Kämpfer P, Kroppenstedt RM. Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 1996; 42:989–1005 [CrossRef]
    [Google Scholar]
  50. Pins MR, Holden JM, Yang JM, Madoff S, Ferraro MJ. Isolation of presumptive Streptobacillus moniliformis from abscesses associated with the female genital tract. Clin Infect Dis 1996; 22:471–476 [CrossRef][PubMed]
    [Google Scholar]
  51. Rowbotham TJ. Rapid identification of Streptobacillus moniliformis. Lancet 1983; 2:567 [CrossRef][PubMed]
    [Google Scholar]
  52. Rygg M, Bruun CF. Rat bite fever (Streptobacillus moniliformis) with septicemia in a child. Scand J Infect Dis 1992; 24:535–540 [CrossRef][PubMed]
    [Google Scholar]
  53. Eisenberg T, Glaeser SP, Blom J, Kämpfer P. Family Leptotrichiaceae. In Whitman WB. editor Bergey’s Manual of Systematics of Archaea and Bacteria Hoboken: John Wiley; 2018
    [Google Scholar]
  54. Eisenberg T, Glaeser SP, Blom J, Rau J, Kämpfer P. Genus Streptobacillus. In Whitman WB. editor Bergey’s Manual of Systematics of Archaea and Bacteria Hoboken: John Wiley; 2018
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004086
Loading
/content/journal/ijsem/10.1099/ijsem.0.004086
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error