1887

Abstract

A Gram-stain-negative, aerobic, rod-shaped, leaf-associated bacterium, designated JS23, was isolated from surface-sterilized leaf tissue of an oil palm grown in Singapore and was investigated by polyphasic taxonomy. Phylogenetic analyses based on 16S rRNA gene sequences and 180 conserved genes in the genome of several members of revealed that strain JS23 formed a distinct evolutionary lineage independent of other taxa within the family . The predominant ubiquinone was Q-8. The primary polar lipids were phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, and an unidentified aminophospholipid. The major fatty acids were C, summed feature 3 (C 7 /C 6) and summed feature 8 (C 7 /C 6). The size of the genome is 5.36 Mbp with a DNA G+C content of 66.2 mol%. Genomic relatedness measurements such as average nucleotide identity, genome-to-genome distance and digital DNA–DNA hybridization clearly distinguished strain JS23 from the closely related genera , , , , , , and . Furthermore, average amino acid identity values and the percentages of conserved proteins, 56.0–68.4 and 28.2–45.5, respectively, were well below threshold values for genus delineation and supported the assignment of JS23 to a novel genus. On the basis of the phylogenetic, biochemical, chemotaxonomic and phylogenomic evidence, strain JS23 is proposed to represent a novel species of a new genus within the family , for which the name gen. nov., sp. nov., is proposed with the type strain of JS23 (= DSM 27307=KACC 17592).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004084
2020-03-23
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/4/2640.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004084&mimeType=html&fmt=ahah

References

  1. Garrity G, Bell J, Lilburn T. Family I. Burkholderiaceae fam. nov. In Brenner DJ, Krieg NR, Staley JT, Garrity GM. (editors) Bergey’s Manual of Systematic Bacteriology, 2nd Edn, vol. 2 (The Proteobacteria), part C (The Alpha-, Beta-, Delta-, and Epsilonproteobacteria New York: Springer; 2006 p 575
    [Google Scholar]
  2. Mannaa M, Park I, Seo Y-S. Genomic features and insights into the taxonomy, virulence, and benevolence of plant-associated Burkholderia species. Int J Mol Sci 2019; 20:121 [View Article]
    [Google Scholar]
  3. Dobritsa AP, Samadpour M. Transfer of eleven species of the genus Burkholderia to the genus Paraburkholderia and proposal of Caballeronia gen. nov. to accommodate twelve species of the genera Burkholderia and Paraburkholderia . Int J Syst Evol Microbiol 2016; 66:2836–2846 [View Article]
    [Google Scholar]
  4. Peeters N, Guidot A, Vailleau F, Valls M, solanacearum R. A wide spread bacterial plant pathogen in the post-genomic era. Mol Plant Pathol 2013; 14:651–662
    [Google Scholar]
  5. Marchetti M, Catrice O, Batut J, Masson-Boivin C. Cupriavidus taiwanensis bacteroids in Mimosa pudica indeterminate nodules are not terminally differentiated. Appl Environ Microbiol 2011; 77:2161–2164 [View Article]
    [Google Scholar]
  6. Suárez-Moreno ZR, Caballero-Mellado J, Coutinho BG, Mendonça-Previato L, James EK et al. Common features of environmental and potentially beneficial plant-associated Burkholderia . Microb Ecol 2012; 63:249–266 [View Article]
    [Google Scholar]
  7. Lladó S, Xu Z, Sørensen SJ, Baldrian P. Draft genome sequence of Burkholderia sordidicola S170, a potential plant growth promoter isolated from coniferous forest soil in the Czech Republic. Genome Announc 2014; 2:e00810–00814 [View Article]
    [Google Scholar]
  8. Bontemps C, Elliott GN, Simon MF, Dos Reis Júnior FB, Gross E et al. Burkholderia species are ancient symbionts of legumes. Mol Ecol 2010; 19:44–52 [View Article]
    [Google Scholar]
  9. Gyaneshwar P, Hirsch AM, Moulin L, Chen W-M, Elliott GN et al. Legume-nodulating Betaproteobacteria: diversity, host range, and future prospects. Mol Plant Microbe Interact 2011; 24:1276–1288 [View Article]
    [Google Scholar]
  10. Ormeño-Orrillo E, Rogel MA, Chueire LMO, Tiedje JM, Martínez-Romero E et al. Genome sequences of Burkholderia sp. strains CCGE1002 and H160, isolated from legume nodules in Mexico and Brazil. J Bacteriol 2012; 194:6927 [View Article]
    [Google Scholar]
  11. Andreolli M, Lampis S, Zenaro E, Salkinoja-Salonen M, Vallini G et al. Burkholderia fungorum DBT1: a promising bacterial strain for bioremediation of PAHs-contaminated soils. FEMS Microbiol Lett 2011; 319:11–18 [View Article]
    [Google Scholar]
  12. Madhaiyan M, Peng N, Te NS, Hsin C, Lin C et al. Improvement of plant growth and seed yield in Jatropha curcas by a novel nitrogen-fixing root associated Enterobacter species. Biotechnol Biofuels 2013; 6:140 [View Article]
    [Google Scholar]
  13. Madhaiyan M, Saravanan VS, Blom J, Smits THM, Rezzonico F et al. Phytobacter palmae sp. nov., a novel endophytic, N2 fixing, plant growth promoting Gammaproteobacterium isolated from oil palm (Elaeis guineensis Jacq.). Int J Syst Evol Microbiol 2020; 70:841–848 [View Article]
    [Google Scholar]
  14. Döbereiner J, Baldani VL, Reis VM. Endophytic occurrence of diazotrophic bacteria in non-leguminous crops. In Fendrik I, del Gallo M, Vanderleyden J, de Zamaroczy M. (editors) Azospirillum VI and related microorganisms Springer; 1995 pp 3–14
    [Google Scholar]
  15. Wilson K. Preparation of genomic DNA from bacteria. In Ausubel FM, Brent R, Kingston E, Moore DD, Seidman JG et al. (editors) Current Protocols in Molecular Biology New York: Wiley; 1997 pp 2.4.1–2.4.2
    [Google Scholar]
  16. DeLong EF. Archaea in coastal marine environments. Proc Natl Acad Sci U S A 1992; 89:5685–5689 [View Article]
    [Google Scholar]
  17. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article]
    [Google Scholar]
  18. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article]
    [Google Scholar]
  19. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article]
    [Google Scholar]
  20. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994; 44:846–849 [View Article]
    [Google Scholar]
  21. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article]
    [Google Scholar]
  22. Chun J, Rainey FA. Integrating genomics into the taxonomy and systematics of the bacteria and archaea. Int J Syst Evol Microbiol 2014; 64:316–324 [View Article]
    [Google Scholar]
  23. Kim M, Oh H-S, Park S-C, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article]
    [Google Scholar]
  24. Madhaiyan M, Hu CJ, Jegan Roy J, Kim S-J, Weon H-Y et al. Aureimonas jatrophae sp. nov. and Aureimonas phyllosphaerae sp. nov., leaf-associated bacteria isolated from Jatropha curcas L. Int J Syst Evol Microbiol 2013; 63:1702–1708 [View Article]
    [Google Scholar]
  25. Agrawal T, Kotasthane AS. Chitinolytic assay of indigenous Trichoderma isolates collected from different geographical locations of Chhattisgarh in Central India. Springerplus 2012; 1:73 [View Article]
    [Google Scholar]
  26. Bennett S. Solexa LTD. Pharmacogenomics 2004; 5:433–438 [View Article]
    [Google Scholar]
  27. Copeland A, Han J, Li M. DUK-A Fast and efficient Kmer based sequence matching tool. United States. https://www.osti.gov/servlets/purl/1016000 ; 2011
  28. Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 2008; 18:821–829 [View Article]
    [Google Scholar]
  29. Gnerre S, Maccallum I, Przybylski D, Ribeiro FJ, Burton JN et al. High-Quality draft assemblies of mammalian genomes from massively parallel sequence data. Proc Natl Acad Sci U S A 2011; 108:1513–1518 [View Article]
    [Google Scholar]
  30. Hyatt D, Chen G-L, Locascio PF, Land ML, Larimer FW et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 2010; 11:119 [View Article]
    [Google Scholar]
  31. Mavromatis K, Ivanova NN, Chen I-MA, Szeto E, Markowitz VM et al. The DOE-JGI standard operating procedure for the annotations of microbial genomes. Stand Genomic Sci 2009; 1:63–67 [View Article]
    [Google Scholar]
  32. Markowitz VM, Chen I-MA, Palaniappan K, Chu K, Szeto E et al. IMG 4 version of the integrated microbial genomes comparative analysis system. Nucleic Acids Res 2014; 42:D560–D567 [View Article]
    [Google Scholar]
  33. Ding W, Baumdicker F, Neher RA. panX: pan-genome analysis and exploration. Nucleic Acids Res 2018; 46:e5 [View Article]
    [Google Scholar]
  34. Darriba D, Posada D, Kozlov AM, Stamatakis A, Morel B et al. ModelTest-NG: a new and scalable tool for the selection of DNA and protein evolutionary models. Mol Biol Evol 2020; 37:291–294 [View Article]
    [Google Scholar]
  35. Kozlov AM, Darriba D, Flouri T, Morel B, Stamatakis A et al. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 2019; 35:4453–4455 [View Article]
    [Google Scholar]
  36. Qin Q-L, Xie B-B, Zhang X-Y, Chen X-L, Zhou B-C et al. A proposed genus boundary for the prokaryotes based on genomic insights. J Bacteriol 2014; 196:2210–2215 [View Article]
    [Google Scholar]
  37. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article]
    [Google Scholar]
  38. Luo C, Rodriguez-R LM, Konstantinidis KT. MyTaxa: an advanced taxonomic classifier for genomic and metagenomic sequences. Nucleic Acids Res 2014; 42:e73 [View Article]
    [Google Scholar]
  39. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  40. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  41. Collins M. Analysis of isoprenoid quinones. Methods Microbiol 1985; 18:329–366
    [Google Scholar]
  42. Gao Z, Yuan Y, Xu L, Liu R, Chen M et al. Paraburkholderia caffeinilytica sp. nov., isolated from the soil of a tea plantation. Int J Syst Evol Microbiol 2016; 66:4185–4190 [View Article]
    [Google Scholar]
  43. Ohshima S, Sato Y, Fujimura R, Takashima Y, Hamada M et al. Mycoavidus cysteinexigens gen. nov., sp. nov., an endohyphal bacterium isolated from a soil isolate of the fungus Mortierella elongata . Int J Syst Evol Microbiol 2016; 66:2052–2057 [View Article]
    [Google Scholar]
  44. Vaz-Moreira I, Narciso-da-Rocha C, De Brandt E, Vandamme P, Silva Ferreira AC et al. Hydromonas duriensis gen. nov., sp. nov., isolated from freshwater. Int J Syst Evol Microbiol 2015; 65:4134–4139 [View Article]
    [Google Scholar]
  45. Chen W-M, Xie P-B, Young C-C, Sheu S-Y. Formosimonas limnophila gen. nov., sp. nov., a new member of the family Burkholderiaceae isolated from a freshwater lake. Int J Syst Evol Microbiol 2017; 67:17–24 [View Article]
    [Google Scholar]
  46. Coenye T. The Family Burkholderiaceae . In Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F. (editors) The Prokaryotes, 4th ed. New York: Springer; 2014 pp 559–776
    [Google Scholar]
  47. Coenye T, Mahenthiralingam E, Henry D, LiPuma JJ, Laevens S et al. Burkholderia ambifaria sp. nov., a novel member of the Burkholderia cepacia complex including biocontrol and cystic fibrosis-related isolates. Int J Syst Evol Microbiol 2001; 51:1481–1490 [View Article]
    [Google Scholar]
  48. Peeters C, Zlosnik JEA, Spilker T, Hird TJ, LiPuma JJ et al. Burkholderia pseudomultivorans sp. nov., a novel Burkholderia cepacia complex species from human respiratory samples and the rhizosphere. Syst Appl Microbiol 2013; 36:483–489 [View Article]
    [Google Scholar]
  49. Lv Y-Y, Chen M-H, Xia F, Wang J, Qiu L-H. Paraburkholderia pallidirosea sp. nov., isolated from a monsoon evergreen broad-leaved forest soil. Int J Syst Evol Microbiol 2016; 66:4537–4542 [View Article]
    [Google Scholar]
  50. Liu X-Y, Li C-X, Luo X-J, Lai Q-L, Xu J-H. Burkholderia jiangsuensis sp. nov., a methyl parathion degrading bacterium, isolated from methyl parathion contaminated soil. Int J Syst Evol Microbiol 2014; 64:3247–3253 [View Article]
    [Google Scholar]
  51. Gao Z-H, Zhong S-F, Qin Y-N, Yang Z, Lv Y-Y et al. Trinickia dinghuensis sp. nov. and Trinickia fusca sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 2019; 69:1390–1397 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004084
Loading
/content/journal/ijsem/10.1099/ijsem.0.004084
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error