1887

Abstract

A coccobacilli-shaped proteobacterium, designated strain SYSU XM001, was isolated from an activated sludge sample collected from JiMei sewage treatment plant, Xiamen, PR China. Cells were Gram-stain-negative, catalase-positive and oxidase-negative. The 16S rRNA gene sequence of strain SYSU XM001 shared less than 92 % sequence identities with members of the class , with highest sequence similarity to TH1-2 (91.6 %; family , order ). The strain exhibited growth at 25–37 °C, pH 7.0–9.0 and in the presence of up to 1 % (w/v) NaCl. Its chemotaxonomic features included ubiquinone-10 as the respiratory isoprenologue, iso-C, 10-methyl C TSBA and anteiso-C as major cellular fatty acids and monoglycosyldiglyceride, glucuronopyranosyldiglyceride and two unidentified glycolipids as the main polar lipids. The DNA G+C content was determined to be 62.9 % (draft genome). Analyses of the phylogenetic data and differences in the chemotaxonomic and biochemical features from related genera in the family indicated that strain SYSU XM001 merits representation of a novel species of a novel genus, for which the name gen. nov., sp. nov. is proposed. The type strain of is SYSU XM001 (=CGMCC 1.16661=KCTC 62915).

Funding
This study was supported by the:
  • Natural Science Foundation of Guangdong Province (Award 2016A030312003)
    • Principle Award Recipient: Wen-Jun Li
  • National Natural Science Foundation of China (Award 31500100)
    • Principle Award Recipient: Wen-Jun Li
  • National Natural Science Foundation of China (Award 31850410475)
    • Principle Award Recipient: Nimaichand Salam
  • National Natural Science Foundation of China (Award 31670492)
    • Principle Award Recipient: Feng Guo
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004082
2020-03-05
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/4/2632.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004082&mimeType=html&fmt=ahah

References

  1. Abraham WR, Rohde M. The family Hyphomonadaceae.. In Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F. (editors) The Prokaryotes: Alphaproteobacteria and Betaproteobacteria Berlin, Heidelberg: Springer; 2014 pp 283–299
    [Google Scholar]
  2. Buck JD. Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl Environ Microbiol 1982; 44:992–993 [View Article]
    [Google Scholar]
  3. Leifson E. Atlas of Bacterial Flagellation New York: Academic Press; 1960
    [Google Scholar]
  4. Kovacs N. Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 1956; 178:703–704 [View Article]
    [Google Scholar]
  5. Gonzalez C, Gutierrez C, Ramirez C. Halobacterium vallismortis sp. nov. an amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol 1978; 24:710–715 [View Article]
    [Google Scholar]
  6. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM. (editors) Methods for General and Molecular Microbiology, Third Edition Washington, DC: American Society of Microbiology; 2007 pp 330–393
    [Google Scholar]
  7. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [View Article]
    [Google Scholar]
  8. Tamaoka J. Analysis of bacterial menaquinone mixtures by reverse-phase high-performance liquid chromatography. Methods Enzymol 1986; 123:251–256 [View Article]
    [Google Scholar]
  9. Minnikin DE, Collins MD, Goodfellow M. Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 1979; 47:87–95 [View Article]
    [Google Scholar]
  10. Collins MD, Jones D. Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2, 4-diaminobutyric acid. J Appl Bacteriol 1980; 48:459–470 [View Article]
    [Google Scholar]
  11. Sasser M. 2001; Identification of bacteria by gas chromatography of cellular fatty acids [database on the Internet]. http://www.microbialid.com/PDF/TechNote_101.pdf
  12. Liu YH, Guo JW, Salam N, Li L, Zhang YG et al. Culturable endophytic bacteria associated with medicinal plant Ferula songorica: molecular phylogeny. distribution and screening for industrially important traits. 3 Biotech 2016; 6:209
    [Google Scholar]
  13. Yang Z-W, Salam N, Hua Z-S, Liu B-B, Han M-X et al. Siccirubricoccus deserti gen. nov., sp. nov., a proteobacterium isolated from a desert sample. Int J Syst Evol Microbiol 2017; 67:4862–4867 [View Article]
    [Google Scholar]
  14. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article]
    [Google Scholar]
  15. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007; 23:2947–2948 [View Article]
    [Google Scholar]
  16. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article]
    [Google Scholar]
  17. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  18. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article]
    [Google Scholar]
  19. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article]
    [Google Scholar]
  20. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article]
    [Google Scholar]
  21. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article]
    [Google Scholar]
  22. Harrison P, Strulo B. SPADES - a process algebra for discrete event simulation. J Logic Comput 2000; 10:3–42 [View Article]
    [Google Scholar]
  23. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article]
    [Google Scholar]
  24. Wu M, Scott AJ. Phylogenomic analysis of bacterial and archaeal sequences with AMPHORA2. Bioinformatics 2012; 28:1033–1034 [View Article]
    [Google Scholar]
  25. Edgar RC. Muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article]
    [Google Scholar]
  26. Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 2000; 17:540–552 [View Article]
    [Google Scholar]
  27. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313 [View Article]
    [Google Scholar]
  28. Letunic I, Bork P. Interactive tree of life (iTOL) V3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res 2016; 44:W242–W245 [View Article]
    [Google Scholar]
  29. Huerta-Cepas J, Szklarczyk D, Forslund K, Cook H, Heller D et al. eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res 2016; 44:D286–D293 [View Article]
    [Google Scholar]
  30. Abraham W-R, Rohde M. Family Hyphomonadaceae. In Whitman WB. editor Bergey’s Manual of Systematics of Archaea and Bacteria John Wiley & Sons Inc; 2015pp. 1–10
    [Google Scholar]
  31. Cai H, Shi Y, Wang Y, Cui H, Jiang H. Aquidulcibacter paucihalophilus gen. nov., sp. nov., a novel member of family Caulobacteraceae isolated from cyanobacterial aggregates in a eutrophic lake. Antonie Van Leeuwenhoek 2017; 110:1169–1177 [View Article]
    [Google Scholar]
  32. Fukui Y, Abe M, Kobayashi M, Saito H, Oikawa H et al. Algimonas porphyrae gen. nov., sp. nov., a member of the family Hyphomonadaceae, isolated from the red alga Porphyra yezoensis . Int J Syst Evol Microbiol 2013; 63:314–320 [View Article]
    [Google Scholar]
  33. Jin L, Ko S-R, Lee CS, Ahn C-Y, Oh H-M et al. Asprobacter aquaticus gen. nov., sp. nov., a prosthecate alphaproteobacterium isolated from fresh water. Int J Syst Evol Microbiol 2017; 67:4443–4448 [View Article]
    [Google Scholar]
  34. Deng W, Zhang Y, Xie X, Zhao Z, Fu Y. Euryhalocaulis caribicus gen. nov., sp. nov., a new members of the family Hyphomonadaceae isolated from the Caribbean sea. Curr Microbiol 2013; 66:606–612 [View Article]
    [Google Scholar]
  35. Cho Y-J, Yi H, Seo B, Cho KH, Chun J. Fretibacter rubidus gen. nov., sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2013; 63:4633–4638 [View Article]
    [Google Scholar]
  36. Abraham W-R, Lünsdorf H, Vancanneyt M, Smit J. Cauliform bacteria lacking phospholipids from an abyssal hydrothermal vent: proposal of Glycocaulis abyssi gen. nov., sp. nov., belonging to the family Hyphomonadaceae . Int J Syst Evol Microbiol 2013; 63:2207–2215 [View Article]
    [Google Scholar]
  37. Abraham W-R. Genus Glycocaulis. In Whitman WB. editor Bergey’s Manual of Systematics of Archaea and Bacteria John Wiley & Sons Inc; 2015 pp 1–7
    [Google Scholar]
  38. Alain K, Tindall BJ, Intertaglia L, Catala P, Lebaron P. Hellea balneolensis gen. nov., sp. nov., a prosthecate alphaproteobacterium from the Mediterranean sea. Int J Syst Evol Microbiol 2008; 58:2511–2519 [View Article]
    [Google Scholar]
  39. Quan Z-X, Zeng D-N, Xiao Y-P, Roh SW, Nam Y-D et al. Henriciella marina gen. nov., sp. nov., a novel member of the family Hyphomonadaceae isolated from the East Sea. J Microbiol 2009; 47:156–161 [View Article]
    [Google Scholar]
  40. Abraham W-R, de Carvalho MP, da Costa Neves TSP, Memoria MT, Tartuci IT et al. Proposal of Henriciella barbarensis sp. nov. and Henriciella algicola sp. nov., stalked species of the genus and emendation of the genus Henriciella . Int J Syst Evol Microbiol 2017; 67:2804–2810 [View Article]
    [Google Scholar]
  41. Abraham W-R, Rohde M. Genus Henriciella. In Whitman WB. editor Bergey’s Manual of Systematics of Archaea and Bacteria John Wiley & Sons Inc; 2015 pp 1–10
    [Google Scholar]
  42. Schlesner H, Bartels C, Sittig M, Dorsch M, Stackebrandt E. Taxonomic and phylogenetic studies on a new taxon of budding, hyphal Proteobacteria, Hirschia baltica gen. nov., sp. nov. Int J Syst Bacteriol 1990; 40:443–451 [View Article]
    [Google Scholar]
  43. Park S, Yoon J-H. Hirschia litorea sp. nov., isolated from seashore sediment, and emended description of the genus Hirschia . Int J Syst Evol Microbiol 2013; 63:1684–1689 [View Article]
    [Google Scholar]
  44. Sun C, Wang R-J, Su Y, Fu G-Y, Zhao Z, R-j W, G-y F et al. Hyphobacterium vulgare gen. nov., sp. nov., a novel alphaproteobacterium isolated from seawater. Int J Syst Evol Microbiol 2017; 67:1169–1176 [View Article]
    [Google Scholar]
  45. Ruan C-J, Zheng X-W, Wang J, Song L, Zhu Y-X et al. Hyphobacterium indicum sp. nov., isolated from deep seawater, and emended description of the genus Hyphobacterium . Int J Syst Evol Microbiol 2018; 68:3760–3765 [View Article]
    [Google Scholar]
  46. Moore RL, Weiner RM, Gebers R, Pongratz GH. nom. rev. emend., Hyphomonas polymorpha Pongratz 1957 nom. rev. emend., and Hyphomonas neptunium (Leifson 1964) comb. nov. emend. (Hyphomicrobium neptunium). Int J Syst Bacteriol 1957; 1984:71–73
    [Google Scholar]
  47. Weiner RM, Melick M, O'Neill K, Quintero E. Hyphomonas adhaerens sp. nov., Hyphomonas johnsonii sp. nov. and Hyphomonas rosenbergii sp. nov., marine budding and prosthecate bacteria. Int J Syst Evol Microbiol 2000; 50 Pt 2:459–469 [View Article]
    [Google Scholar]
  48. Li C, Lai Q, Li G, Sun F, Shao Z. Hyphomonas atlanticus sp. nov., isolated from the Atlantic Ocean and emended description of the genus Hyphomonas . Syst Appl Microbiol 2014; 37:423–428 [View Article]
    [Google Scholar]
  49. Jung JY, Kim JM, Jin HM, Kim SY, Park W et al. Litorimonas taeanensis gen. nov., sp. nov., isolated from a sandy beach. Int J Syst Evol Microbiol 2011; 61:1534–1538 [View Article]
    [Google Scholar]
  50. Nedashkovskaya OI, Kukhlevskiy AD, Zhukova NV, Kim S-J, Rhee S-K. Litorimonas cladophorae sp. nov., a new alphaproteobacterium isolated from the Pacific green alga Cladophora stimpsoni, and emended descriptions of the genus Litorimonas and Litorimonas taeaensis . Antonie Van Leeuwenhoek 2013; 103:1263–1269 [View Article]
    [Google Scholar]
  51. Jung HS, Jeong SE, Jin HM, Jeon CO et al. Genus Litorimonas. In Whitman WB. editor Bergey’s Manual of Systematics of Archaea and Bacteria John Wiley & Sons Inc; 2015 pp 1–.6
    [Google Scholar]
  52. Abraham WR, Strömpl C, Bennasar A, Vancanneyt M, Snauwaert C et al. Phylogeny of Maricaulis Abraham, et al. 1999 and proposal of Maricaulis virginensis sp. nov., M. parjimensis sp. nov., M. washingtonen sp. nov. and M. salignorans . Int J Syst Evol Microbiol 2002:2191–2201
    [Google Scholar]
  53. Zhang X-Y, Li G-W, Wang C-S, Zhang Y-J, Xu X-W et al. Marinicauda pacifica gen. nov., sp. nov., a prosthecate alphaproteobacterium of the family Hyphomonadaceae isolated from deep seawater. Int J Syst Evol Microbiol 2013; 63:2248–2253 [View Article]
    [Google Scholar]
  54. Strömpl C, Hold GL, Lünsdorf H, Graham J, Gallacher S et al. Oceanicaulis alexandrii gen. nov., sp. nov., a novel stalked bacterium isolated from a culture of the dinoflagellate Alexandrium tamarense (Lebour) Balech. Int J Syst Evol Microbiol 2003; 53:1901–1906 [View Article]
    [Google Scholar]
  55. Abraham W-R. Genus Oceanicaulis. In Whitman WB. editor Bergey’s Manual of Systematics of Archaea and Bacteria John Wiley & Sons Inc: 2015 pp 1–7
    [Google Scholar]
  56. Kang HS, Lee SD. Ponticaulis koreensis gen. nov., sp. nov., a new member of the family Hyphomonadaceae isolated from seawater. Int J Syst Evol Microbiol 2009; 59:2951–2955 [View Article]
    [Google Scholar]
  57. Lee K, Lee HK, Choi T-H, Cho J-C. Robiginitomaculum antarcticum gen. nov., sp. nov., a member of the family Hyphomonadaceae, from Antarctic seawater. Int J Syst Evol Microbiol 2007; 57:2595–2599 [View Article]
    [Google Scholar]
  58. Abraham W-R, Strömpl C, Vancanneyt M, Bennasar A, Swings J et al. Woodsholea maritima gen. nov., sp. nov., a marine bacterium with a low diversity of polar lipids. Int J Syst Evol Microbiol 2004; 54:1227–1234 [View Article]
    [Google Scholar]
  59. Abraham W-R. Genus Woodsholea. In Abraham W-R, Woodsholea Genus. (editors) Bergey’s Manual of Systematics of Archaea and Bacteria John Wiley & Sons Inc; 2015 pp 1–6
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004082
Loading
/content/journal/ijsem/10.1099/ijsem.0.004082
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error