1887

Abstract

Strain JC651 was isolated from a sediment sample collected from Chilika lagoon, which is one of the world’s most important brackish water lakes with estuarine characteristics. Colonies of this strain are light pink and cells are Gram-stain negative, spherical to pear shaped and form rosettes. Strain JC651 grows well up to pH 9.0 and tolerates up to 5 % NaCl (w/v). The respiratory quinone is MK6. The detected major fatty acids are C ω9 and C. Its polar lipids are diphosphatidylglycerol, an unidentified phospholipid, phosphatidylglycerol and phosphatidylcholine. Strain JC651 shows highest 16S rRNA gene sequence similarity (97.8%) to the type species of the genus , UC8. The genome size of strain JC651 is 6.2 Mb with a G+C content of 62.4 mol%. For the resolution of the phylogenetic congruence of the novel strain, the phylogeny was also reconstructed with the sequences of 92 core genes. Based on the phylogenetic analyses, low digital DNA–DNA hybridization values (19.5%), low (74.9%) genome average nucleotide identity results, chemotaxonomic characteristics and differential physiological properties, strain JC651 is recognized as a new species of the genus for which we propose the name sp. nov. The type strain is JC651 (=KCTC 72178=NBRC 113926).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004076
2020-03-04
2024-12-07
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/4/2616.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004076&mimeType=html&fmt=ahah

References

  1. Bondoso J, Albuquerque L, Nobre MF, Lobo-da-Cunha A, da Costa MS et al. Roseimaritima ulvae gen. nov., sp. nov. and Rubripirellula obstinata gen. nov., sp. nov. two novel planctomycetes isolated from the epiphytic community of macroalgae. Syst Appl Microbiol 2015; 38:8–15 [View Article]
    [Google Scholar]
  2. Staley JT, Fuerst JA, Giovannoni S, Schlesner H. The order Planctomycetales and the genera Planctomyces, Pirellula, Gemmata, and Isosphaera . The Prokaryotes 4 New York: Springer; 1992 pp 3710–3731
    [Google Scholar]
  3. Köhler T, Stingl U, Meuser K, Brune A. Novel lineages of Planctomycetes densely colonize the alkaline gut of soil-feeding termites (Cubitermes spp.). Environ Microbiol 2008; 10:1260–1270 [View Article]
    [Google Scholar]
  4. Penton CR, Devol AH, Tiedje JM. Molecular evidence for the broad distribution of anaerobic ammonium-oxidizing bacteria in freshwater and marine sediments. Appl Environ Microbiol 2006; 72:6829–6832 [View Article]
    [Google Scholar]
  5. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article]
    [Google Scholar]
  6. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article]
    [Google Scholar]
  7. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJM et al. ABySS: a parallel assembler for short read sequence data. Genome Res 2009; 19:1117–1123 [View Article]
    [Google Scholar]
  8. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 2017; 13:e1005595 [View Article]
    [Google Scholar]
  9. Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 2008; 18:821–829 [View Article]
    [Google Scholar]
  10. Auch AF, Klenk H-P, Göker M. Standard operating procedure for calculating genome-to-genome distances based on high-scoring segment pairs. Stand Genomic Sci 2010; 2:142–148 [View Article]
    [Google Scholar]
  11. Rodriguez-R LM, Konstantinidis KT. Bypassing cultivation to identify bacterial species. Microbe 2014; 9:111–118 [View Article]
    [Google Scholar]
  12. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article]
    [Google Scholar]
  13. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article]
    [Google Scholar]
  14. Meier-Kolthoff JP, Klenk H-P, Göker M. Taxonomic use of DNA G+C content and DNA-DNA hybridization in the genomic age. Int J Syst Evol Microbiol 2014; 64:352–356 [View Article]
    [Google Scholar]
  15. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article]
    [Google Scholar]
  16. Konstantinidis KT, Rosselló-Móra R, Amann R. Uncultivated microbes in need of their own taxonomy. ISME J 2017; 11:2399–2406 [View Article]
    [Google Scholar]
  17. Spring S, Bunk B, Spröer C, Rohde M, Klenk H-P. Genome biology of a novel lineage of Planctomycetes widespread in anoxic aquatic environments. Environ Microbiol 2018; 20:2438–2455 [View Article]
    [Google Scholar]
  18. Wattam AR, Davis JJ, Assaf R, Boisvert S, Brettin T et al. Improvements to PATRIC, the all-bacterial bioinformatics database and analysis resource center. Nucleic Acids Res 2017; 45:D535–D542 [View Article]
    [Google Scholar]
  19. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article]
    [Google Scholar]
  20. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article]
    [Google Scholar]
  21. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article]
    [Google Scholar]
  22. Na S-I, Kim YO, Yoon S-H, Ha S-M, Baek I et al. UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [View Article]
    [Google Scholar]
  23. Blin K, Shaw S, Steinke K, Villebro R, Ziemert N et al. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 2019; 47:W81–W87 [View Article]
    [Google Scholar]
  24. Rodríguez-Concepción M, Boronat A. Elucidation of the methylerythritol phosphate pathway for isoprenoid biosynthesis in bacteria and plastids. A metabolic milestone achieved through genomics. Plant Physiol 2002; 130:1079–1089 [View Article]
    [Google Scholar]
  25. Estis LF, Haschemeyer RH, Wall JS. Uranyl sulphate: a new negative stain for electron microscopy. J Microsc 1981; 124:313–318 [View Article]
    [Google Scholar]
  26. Smibert RM, Krieg NR. General characterization. In Gerhardt P, Murray RGE, Costilow RN, Nester EW, Wood WA. (editors) Manual of Methods for General Microbiology 24 Washington, DC: Am Soc Microbiol; 1981 pp 409–443
    [Google Scholar]
  27. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical note; 1990; 101
  28. Kates M. Techniques of Lipidology. Isolation, analysis and identification of lipids. Laboratory Techniques in Biochemistry and Molecular Biology 3 1986 pp 100–112
    [Google Scholar]
  29. Oren A, Duker S, Ritter S. The polar lipid composition of Walsby's square bacterium. FEMS Microbiol Lett 1996; 138:135–140 [View Article]
    [Google Scholar]
  30. Imhoff JF. Quinones of phototrophic purple bacteria. FEMS Microbiol Lett 1984; 25:85–89 [View Article]
    [Google Scholar]
  31. Bondoso J, Godoy-Vitorino F, Balagué V, Gasol JM, Harder J et al. Epiphytic Planctomycetes communities associated with three main groups of macroalgae. FEMS Microbiol Ecol 2017; 93:fiw255–259 [View Article]
    [Google Scholar]
  32. Kohn T, Wiegand S, Boedeker C, Rast P, Heuer A et al. Planctopirus ephydatiae, a novel planctomycete isolated from a freshwater sponge. Syst Appl Microbiol 2020; 43:126022 [View Article]
    [Google Scholar]
  33. Srichandan S, Kim JY, Bhadury P, Barik SK, Muduli PR et al. Spatiotemporal distribution and composition of phytoplankton assemblages in a coastal tropical lagoon: Chilika, India. Environ Monit Assess 2015; 187:47–64 [View Article]
    [Google Scholar]
  34. Panigrahi S, Wikner J, Panigrahy RC, Satapathy KK, Acharya BC. Variability of nutrients and phytoplankton biomass in a shallow brackish water ecosystem (Chilika lagoon, India). Limnology 2009; 10:73–85 [View Article]
    [Google Scholar]
  35. Behera P, Mohapatra M, Rastogi G. Microbial Ecology of Chilika Lagoon. In Finlayson C, Rastogi G, Mishra D, Pattnaik A. (editors) Ecology, conservation, and restoration of Chilika lagoon, India 6 Wetlands: Ecology, conservation and management, Springer, Cham.; 2020
    [Google Scholar]
  36. Beltran JCM, Stange C. Apocarotenoids: A new carotenoid-derived pathway. In Stange C. editor Carotenoids in Nature. Subcellular Biochemistry 79 Springer, Cham; 2019
    [Google Scholar]
  37. Zhang C. Biosynthesis of carotenoids and apocarotenoids by microorganisms and their industrial potential. In Zepka LQ, Jacob-Lopes E, Rosso Verade. (editors) Progress in Carotenoid Research Intech Open Ltd; 2018
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.004076
Loading
/content/journal/ijsem/10.1099/ijsem.0.004076
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error