Skip to content
1887

Abstract

A piezotolerant, HO-tolerant, heavy-metal-tolerant, slightly halophilic bacterium (strain NBT06E8) was isolated from a deep-sea sediment sample collected from the New Britain Trench at depth of 8900 m. The strain was aerobic, motile, Gram-stain-negative, rod-shaped, oxidase-positive and catalase-positive. Growth of the strain was observed at 4–45 °C (optimum, 30 °C), at pH 5–11 (optimum, pH 8–9) and in 0.5–21 % (w/v) NaCl (optimum, 3–7 %). The optimum pressure for growth was 0.1–30 MPa with tolerance up to 60 MPa. Under optimum growth conditions, the strain could tolerate 15 mM HO. Resuls of 16S rRNA gene sequence analysis showed that strain NBT06E8 is closely related to DSM 30161 (99.5%), DSM 5425 (99.43%) and Althf1 (99.35%). The digital DNA–DNA hybridization values between strain NBT06E8 and the three related type strains, , and , were 30.5±2.4 %, 30.7±2.5% and 31.5±2.5 %, respectively. The average nucleotide identity values between strain NBT06E8 and the three related type strains were 86.26, 86.26 and 83.63 %, respectively. The major fatty acids were summed feature 8 (C ω7 and/or C ω6) and C. The predominant respiratory quinone detected was ubiquinone-9 (Q-9). Based on its phenotypic and phylogenetic characteristics, we conclude that strain NBT06E8 represents a novel species of the genus , for which the name sp. nov. is proposed (type strain NBT06E8= MCCC 1K04228=KCTC 72680).

Funding
This study was supported by the:
  • National Natural Science Foundation of China (Award 41773069)
    • Principle Award Recipient: Jiasong Fang
  • National Natural Science Foundation of China (Award 91951210)
    • Principle Award Recipient: Jiasong Fang
  • Pilot National Laboratory for Marine Science and Technology (Award OF2019NO06)
    • Principle Award Recipient: Zhe Xie
  • National Key R&D Program of China (Award 2018YFC0310600)
    • Principle Award Recipient: Jiasong Fang
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004069
2020-03-04
2025-04-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/4/2560.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004069&mimeType=html&fmt=ahah

References

  1. Vreeland RH, Litchfield CD, Martin EL, ELLIOT E. Halomonas elongata, a new genus and species of extremely salt-tolerant bacteria. Int J Syst Bacteriol 1980; 30:485–495 [View Article]
    [Google Scholar]
  2. Kaye JZ, Sylvan JB, Edwards KJ, Baross JA. Halomonas and Marinobacter ecotypes from hydrothermal vent, subseafloor and deep-sea environments. FEMS Microbiol Ecol 2011; 75:123–133 [View Article]
    [Google Scholar]
  3. Parte AC. LPSN--list of prokaryotic names with standing in nomenclature. Nucleic Acids Res 2014; 42:D613–D616 [View Article]
    [Google Scholar]
  4. Parte AC. LPSN - List of Prokaryotic names with Standing in Nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol 2018; 68:1825–1829 [View Article]
    [Google Scholar]
  5. Kaye JZ, Márquez MC, Ventosa A, Baross JA. Halomonas neptunia sp. nov., Halomonas sulfidaeris sp. nov., Halomonas axialensis sp. nov. and Halomonas hydrothermalis sp. nov.: halophilic bacteria isolated from deep-sea hydrothermal-vent environments. Int J Syst Evol Microbiol 2004; 54:499–511 [View Article]
    [Google Scholar]
  6. Harrison JP, Hallsworth JE, Cockell CS. Reduction of the temperature sensitivity of Halomonas hydrothermalis by iron starvation combined with microaerobic conditions. Appl Environ Microbiol 2015; 81:2156–2162 [View Article]
    [Google Scholar]
  7. Gaboyer F, Vandenabeele-Trambouze O, Cao J, Ciobanu M-C, Jebbar M et al. Physiological features of Halomonas lionensis sp. nov., a novel bacterium isolated from a Mediterranean Sea sediment. Res Microbiol 2014; 165:490–500 [View Article]
    [Google Scholar]
  8. Long M-R, Zhang D-F, Yang X-Y, Zhang X-M, Zhang Y-G et al. Halomonas nanhaiensis sp. nov., a halophilic bacterium isolated from a sediment sample from the South China Sea. Antonie van Leeuwenhoek 2013; 103:997–1005 [View Article]
    [Google Scholar]
  9. Simon-Colin C, Raguénès G, Cozien J, Guezennec JG. Halomonas profundus sp. nov., a new PHA-producing bacterium isolated from a deep-sea hydrothermal vent shrimp. J Appl Microbiol 2008; 104:1425–1432 [View Article]
    [Google Scholar]
  10. Xu L, Xu X-W, Meng F-X, Huo Y-Y, Oren A et al. Halomonas zincidurans sp. nov., a heavy-metal-tolerant bacterium isolated from the deep-sea environment. Int J Syst Evol Microbiol 2013; 63:4230–4236 [View Article]
    [Google Scholar]
  11. Poli A, Esposito E, Orlando P, Lama L, Giordano A et al. Halomonas alkaliantarctica sp. nov., isolated from saline lake Cape Russell in Antarctica, an alkalophilic moderately halophilic, exopolysaccharide-producing bacterium. Syst Appl Microbiol 2007; 30:31–38 [View Article]
    [Google Scholar]
  12. Guzmán D, Quillaguamán J, Muñoz M, Hatti-Kaul R. Halomonas andesensis sp. nov., a moderate halophile isolated from the saline lake Laguna Colorada in Bolivia. Int J Syst Evol Microbiol 2010; 60:749–753 [View Article]
    [Google Scholar]
  13. Wu Y-H, Xu X-W, Huo Y-Y, Zhou P, Zhu X-F et al. Halomonas caseinilytica sp. nov., a halophilic bacterium isolated from a saline lake on the Qinghai-Tibet Plateau, China. Int J Syst Evol Microbiol 2008; 58:1259–1262 [View Article]
    [Google Scholar]
  14. Chen C, Shi R, Liu B-B, Zhang Y-J, Sun H-Z et al. Halomonas qijiaojingensis sp. nov. and Halomonas flava sp. nov., two moderately halophilic bacteria isolated from a salt lake. Antonie van Leeuwenhoek 2011; 100:365–373 [View Article]
    [Google Scholar]
  15. Boltyanskaya YV, Kevbrin VV, Lysenko AM, Kolganova TV, Tourova TP et al. Halomonas mongoliensis sp. nov. and Halomonas kenyensis sp. nov., new haloalkaliphilic denitrifiers capable of N2O reduction, isolated from soda lakes. Microbiology 2007; 76:739–747 [View Article]
    [Google Scholar]
  16. Wang Y, Tang S-K, Lou K, Mao P-H, Jin X et al. Halomonas lutea sp. nov., a moderately halophilic bacterium isolated from a salt lake. Int J Syst Evol Microbiol 2008; 58:2065–2069 [View Article]
    [Google Scholar]
  17. Wang T, Wei X, Xin Y, Zhuang J, Shan S et al. Halomonas lutescens sp. nov., a halophilic bacterium isolated from a lake sediment. Int J Syst Evol Microbiol 2016; 66:4697–4704 [View Article]
    [Google Scholar]
  18. Duckworth AW, Grant WD, Jones BE, Meijer D, Márquez MC et al. Halomonas magadii sp. nov., a new member of the genus Halomonas, isolated from a soda lake of the East African Rift Valley. Extremophiles 2000; 4:53–60 [View Article]
    [Google Scholar]
  19. James SR, Dobson SJ, Franzmann PD, McMeekin TA. Halomonas meridiana, a new species of extremely halotolerant bacteria isolated from Antarctic saline lakes. Syst Appl Microbiol 1990; 13:270–278 [View Article]
    [Google Scholar]
  20. Romano I, Lama L, Orlando P, Nicolaus B, Giordano A et al. Halomonas sinaiensis sp. nov., a novel halophilic bacterium isolated from a salt lake inside Ras Muhammad Park, Egypt. Extremophiles 2007; 11:789–796 [View Article]
    [Google Scholar]
  21. Zhang S, Pan J, Lu W, Yan Y, Wang H et al. Halomonas urumqiensis sp. nov., a moderately halophilic bacterium isolated from a saline-alkaline lake. Int J Syst Evol Microbiol 2016; 66:1962–1969 [View Article]
    [Google Scholar]
  22. Guan T-W, Xiao J, Zhao K, Luo X-X, Zhang X-P et al. Halomonas xinjiangensis sp. nov., a halotolerant bacterium isolated from a salt lake. Int J Syst Evol Microbiol 2010; 60:349–352 [View Article]
    [Google Scholar]
  23. Gan L, Long X, Zhang H, Hou Y, Tian J et al. Halomonas saliphila sp. nov., a moderately halophilic bacterium isolated from a saline soil. Int J Syst Evol Microbiol 2018; 68:1153–1159 [View Article]
    [Google Scholar]
  24. Oguntoyinbo FA, Cnockaert M, Cho G-S, Kabisch J, Neve H et al. Halomonas nigrificans sp. nov., isolated from cheese. Int J Syst Evol Microbiol 2018; 68:371–376 [View Article]
    [Google Scholar]
  25. Carlson RP, Oshota O, Shipman M, Caserta JA, Hu P et al. Integrated molecular, physiological and in silico characterization of two Halomonas isolates from industrial brine. Extremophiles 2016; 20:261–274 [View Article]
    [Google Scholar]
  26. Soto-Ramírez N, Sánchez-Porro C, Rosas S, González W, Quiñones M et al. Halomonas avicenniae sp. nov., isolated from the salty leaves of the black mangrove Avicennia germinans in Puerto Rico. Int J Syst Evol Microbiol 2007; 57:900–905 [View Article]
    [Google Scholar]
  27. Tang X, Zhai L, Lin Y, Yao S, Wang L et al. Halomonas alkalicola sp. nov., isolated from a household product plant. Int J Syst Evol Microbiol 2017; 67:1546–1550 [View Article]
    [Google Scholar]
  28. Poli A, Nicolaus B, Denizci AA, Yavuzturk B, Kazan D. Halomonas smyrnensis sp. nov., a moderately halophilic, exopolysaccharide-producing bacterium. Int J Syst Evol Microbiol 2013; 63:10–18 [View Article]
    [Google Scholar]
  29. Llamas I, Béjar V, Martínez-Checa F, Martínez-Cánovas MJ, Molina I et al. Halomonas stenophila sp. nov., a halophilic bacterium that produces sulphate exopolysaccharides with biological activity. Int J Syst Evol Microbiol 2011; 61:2508–2514 [View Article]
    [Google Scholar]
  30. Qu L, Lai Q, Zhu F, Hong X, Zhang J et al. Halomonas daqiaonensis sp. nov., a moderately halophilic, denitrifying bacterium isolated from a littoral saltern. Int J Syst Evol Microbiol 2011; 61:1612–1616 [View Article]
    [Google Scholar]
  31. González-Domenech CM, Martínez-Checa F, Quesada E, Béjar V. Halomonas cerina sp. nov., a moderately halophilic, denitrifying, exopolysaccharide-producing bacterium. Int J Syst Evol Microbiol 2008; 58:803–809 [View Article]
    [Google Scholar]
  32. García MT, Mellado E, Ostos JC, Ventosa A. Halomonas organivorans sp. nov., a moderate halophile able to degrade aromatic compounds. Int J Syst Evol Microbiol 2004; 54:1723–1728 [View Article]
    [Google Scholar]
  33. Bianciotto V, Bandi C, Minerdi D, Sironi M, Tichy HV et al. An obligately endosymbiotic mycorrhizal fungus itself harbors obligately intracellular bacteria. Appl Environ Microbiol 1996; 62:3005–3010 [View Article]
    [Google Scholar]
  34. Daffonchio D, Borin S, Frova G, Manachini PL, Sorlini C. PCR fingerprinting of whole genomes: the spacers between the 16S and 23S rRNA genes and of intergenic tRNA gene regions reveal a different intraspecific genomic variability of Bacillus cereus and Bacillus licheniformis [corrected]. Int J Syst Bacteriol 1998; 48:107–116 [View Article]
    [Google Scholar]
  35. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article]
    [Google Scholar]
  36. Kumar S, Nei M, Dudley J, Tamura K. MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 2008; 9:299–306 [View Article]
    [Google Scholar]
  37. Luo R, Liu B, Xie Y, Li Z, Huang W et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 2012; 1:18 [View Article]
    [Google Scholar]
  38. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article]
    [Google Scholar]
  39. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article]
    [Google Scholar]
  40. Meier-Kolthoff JP, Klenk H-P, Göker M. Taxonomic use of DNA G+C content and DNA-DNA hybridization in the genomic age. Int J Syst Evol Microbiol 2014; 64:352–356 [View Article]
    [Google Scholar]
  41. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 2017; 110:1281–1286 [View Article]
    [Google Scholar]
  42. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article]
    [Google Scholar]
  43. Rodriguez-R LM. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. PeerJ Preprints 2016; 4:e1900v1
    [Google Scholar]
  44. Rodriguez-R LM, Konstantinidis KT. Bypassing cultivation to identify bacterial species. Microbe 2014; 9:111–118 [View Article]
    [Google Scholar]
  45. Campbell A, Mrázek J, Karlin S. Genome signature comparisons among prokaryote, plasmid, and mitochondrial DNA. Proc Natl Acad Sci U S A 1999; 96:9184–9189 [View Article]
    [Google Scholar]
  46. Karlin S, Campbell AM, Mrázek J. Comparative DNA analysis across diverse genomes. Annu Rev Genet 1998; 32:185–225 [View Article]
    [Google Scholar]
  47. Lai Q, Yuan J, Gu L, Shao Z. Marispirillum indicum gen. nov., sp. nov., isolated from a deep-sea environment. Int J Syst Evol Microbiol 2009; 59:1278–1281 [View Article]
    [Google Scholar]
  48. Xie Z, Jian H, Jin Z, Xiao X. Enhancing the adaptability of the Deep-Sea bacterium Shewanella piezotolerans WP3 to high pressure and low temperature by experimental evolution under H2O2 stress. Appl Environ Microbiol 2018; 84:e02342–17 [View Article]
    [Google Scholar]
  49. Kato C, Sato T, Horikoshi K. Isolation and properties of barophilic and barotolerant bacteria from deep-sea mud samples. Biodivers Conserv 1995; 4:1–9 [View Article]
    [Google Scholar]
  50. Fang J, Zhang L, Bazylinski DA. Deep-Sea piezosphere and piezophiles: geomicrobiology and biogeochemistry. Trends Microbiol 2010; 18:413–422 [View Article]
    [Google Scholar]
  51. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, Marzluf GA, Schmidt TM. (editors) Methods for General and Molecular Microbiology, 3rd ed. Washington, DC: American Society of Microbiology; 2007330–393
    [Google Scholar]
  52. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1900
    [Google Scholar]
  53. Athalye M, Noble WC, Minnikin DE. Analysis of cellular fatty acids by gas chromatography as a tool in the identification of medically important coryneform bacteria. J Appl Bacteriol 1985; 58:507–512 [View Article]
    [Google Scholar]
  54. Arahal DR, Vreeland RH, Litchfield CD, Mormile MR, Tindall BJ et al. Recommended minimal standards for describing new taxa of the family Halomonadaceae . Int J Syst Evol Microbiol 2007; 57:2436–2446 [View Article]
    [Google Scholar]
  55. Franzmann PD, Tindall BJ. A chemotaxonomic study of members of the family Halomonadaceae . Syst Appl Microbiol 1990; 13:142–147 [View Article]
    [Google Scholar]
  56. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  57. Tindall BJ. Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 1990; 66:199–202 [View Article]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.004069
Loading
/content/journal/ijsem/10.1099/ijsem.0.004069
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error