1887

Abstract

An aerobic methane oxidizing bacterium, designated XLMV4, was isolated from the oxic surface layer of an oil sands tailings pond in Alberta, Canada. Strain XLMV4 is capable of growth on methane and methanol as energy sources. NHCl and sodium nitrate are nitrogen sources. Cells are Gram-negative, beige to yellow-pigmented, motile (via a single polar flagellum), short rods 2.0–3.3 µm in length and 1.0–1.6 µm in width. A thick capsule is produced. Surface glycoprotein or cup shape proteins typical of the genera and were not observed. Major isoprenoid quinones are Q-8 and Q-7 at an approximate molar ratio of 71 : 22. Major polar lipids are phosphoglycerol and ornithine lipids. Major fatty acids are C ω8+C ω7 (34 %), C ω5 (16 %), and C ω7 (11 %). Optimum growth is observed at pH 8.0 and 25 °C. The DNA G+C content based on a draft genome sequence is 46.7 mol%. Phylogenetic analysis of 16S rRNA genes and a larger set of conserved genes place strain XLMV4 within the class and family , most closely related to members of the genera and (95.0–97.1 % 16S rRNA gene sequence identity). genomic predictions of DNA–DNA hybridization values of strain XLMV4 to the nearest phylogenetic neighbours were all below 26 %. On the basis of the data presented, strain XLMV4 is considered to represent a new genus and species for which the name is proposed. Strain XLMV4 (=DSMZ DSM 27269=ATCC TSD-186) is the type strain.

Funding
This study was supported by the:
  • Genome Canada (Award 1203)
    • Principle Award Recipient: Peter F Dunfield
  • Natural Sciences and Engineering Research Council of Canada (Award CRDPJ478071-14)
    • Principle Award Recipient: Peter F Dunfield
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004064
2020-02-19
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/4/2499.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004064&mimeType=html&fmt=ahah

References

  1. Mikula RJ, Munoz VA, Omotoso O. Centrifugation options for production of dry Stackable tailings in surface- Mined oil sands tailings management. J Can Petrol Technol 2009; 48:19–23 [View Article]
    [Google Scholar]
  2. Penner TJ, Foght JM. Mature fine tailings from oil sands processing harbour diverse methanogenic communities. Can J Microbiol 2010; 56:459–470 [View Article]
    [Google Scholar]
  3. Holowenko FM, MacKinnon MD, Fedorak PM. Methanogens and sulfate-reducing bacteria in oil sands fine tailings waste. Can J Microbiol 2000; 46:927–937 [View Article]
    [Google Scholar]
  4. Saidi-Mehrabad A, He Z, Tamas I, Sharp CE, Brady AL et al. Methanotrophic bacteria in oilsands tailings ponds of northern Alberta. ISME J 2013; 7:908–921 [View Article]
    [Google Scholar]
  5. Heyer J, Malashenko Y, Berger U, Budkova E. Distribution of methanotrophic bacteria. Z Allg Mikrobiol 1984; 24:725–744
    [Google Scholar]
  6. Wise MG, McArthur JV, Shimkets LJ. Methylosarcina fibrata gen. nov., sp. nov. and Methylosarcina quisquiliarum sp.nov., novel type 1 methanotrophs. Int J Syst Evol Microbiol 2001; 51:611–621 [View Article]
    [Google Scholar]
  7. Whittenbury R, Davies SL, Davey JF. Exospores and cysts formed by methane-utilizing bacteria. J Gen Microbiol 1970; 61:219–226 [View Article]
    [Google Scholar]
  8. Bowman JP, Sly LI, Nichols PD, Hayward AC. Revised taxonomy of the methanotrophs: description of Methylobacter gen. nov., emendation of Methylococcus, validation of Methylosinus and Methylocystis species, and a proposal that the family Methylococcaceae includes only the group I methanotrophs. Int J Syst Bacteriol 1993; 43:735–753 [View Article]
    [Google Scholar]
  9. Duguid JP. The demonstration of bacterial capsules and slime. J Pathol Bacteriol 1951; 63:673–685 [View Article]
    [Google Scholar]
  10. Ostle AG, Holt JG. Nile blue a as a fluorescent stain for poly-beta-hydroxybutyrate. Appl Environ Microbiol 1982; 44:238–241 [View Article]
    [Google Scholar]
  11. Kim J-J, Alkawally M, Brady AL, Rijpstra WIC, Sinninghe Damsté JS et al. Chryseolinea serpens gen. nov., sp. nov., a member of the phylum Bacteroidetes isolated from soil. Int J Syst Evol Microbiol 2013; 63:654–660 [View Article]
    [Google Scholar]
  12. Khmelenina VN, Suzina NE, Trotsenko IA. Surface layers of methanotrophic bacteria. Mikrobiologiia 2013; 82:529–541 [View Article]
    [Google Scholar]
  13. Hayat MA. Fixation for electron microscopy Glutaraldehyde- Ruthenium Red. Academy press; 1980 pp 120–124
    [Google Scholar]
  14. Buck JD. Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl Environ Microbiol 1982; 44:992–993 [View Article]
    [Google Scholar]
  15. Powers EM. Efficacy of the Ryu nonstaining KOH technique for rapidly determining gram reactions of food-borne and waterborne bacteria and yeasts. Appl Environ Microbiol 1995; 61:3756–3758 [View Article]
    [Google Scholar]
  16. Sorokin DY, Jones BE, Kuenen JG. An obligate methylotrophic, methane-oxidizing Methylomicrobium species from a highly alkaline environment. Extremophiles 2000; 4:145–155 [View Article]
    [Google Scholar]
  17. Stein LY, Klotz MG. Nitrifying and denitrifying pathways of methanotrophic bacteria. Biochem Soc Trans 2011; 39:1826–1831 [View Article]
    [Google Scholar]
  18. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [View Article]
    [Google Scholar]
  19. Groth I, Schumann P, Rainey FA, Martin K, Schuetze B et al. Demetria terragena gen. nov., sp. nov., a new genus of actinomycetes isolated from compost soil. Int J Syst Bacteriol 1997; 47:1129–1133 [View Article]
    [Google Scholar]
  20. Kulichevskaya IS, Kostina LA, Valásková V, Rijpstra WIC, Damsté JSS et al. Acidicapsa borealis gen. nov., sp. nov. and Acidicapsa ligni sp. nov., subdivision 1 Acidobacteria from Sphagnum peat and decaying wood. Int J Syst Evol Microbiol 2012; 62:1512–1520 [View Article]
    [Google Scholar]
  21. Vincent M, Guglielmetti G, Cassani G, Tonini C. Determination of double-bond position in diunsaturated compounds by mass spectrometry of dimethyl disulfide derivatives. Anal Chem 1987; 59:694–699 [View Article]
    [Google Scholar]
  22. Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 2008; 18:821–829 [View Article]
    [Google Scholar]
  23. Markowitz VM, Chen I-MA, Chu K, Szeto E, Palaniappan K et al. IMG/M: the integrated metagenome data management and comparative analysis system. Nucleic Acids Res 2012; 40:D123–D129 [View Article]
    [Google Scholar]
  24. Kim O-S, Cho Y-J, Lee K, Yoon S-H, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article]
    [Google Scholar]
  25. Stackebrandt E, Ebers J. Taxonomic parameters revisited: tarnished gold standards. J Microbiol 2006; 33:152
    [Google Scholar]
  26. Auch AF, von Jan M, Klenk H-P, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117134 [View Article]
    [Google Scholar]
  27. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article]
    [Google Scholar]
  28. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Micr 2007; 57.1:81–91
    [Google Scholar]
  29. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article]
    [Google Scholar]
  30. Edgar RC. Muscle: a multiple sequence alignment method with reduced time and space complexity. BMC Biol 2004; 5:113 [View Article]
    [Google Scholar]
  31. Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 2010; 59:307–321 [View Article]
    [Google Scholar]
  32. Segata N, Börnigen D, Morgan XC, Huttenhower C. PhyloPhlAn is a new method for improved phylogenetic and taxonomic placement of microbes. Nat Commun 2013; 4:2304 [View Article]
    [Google Scholar]
  33. Gouy M, Guindon S, Gascuel O. Seaview version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 2010; 27:221–224 [View Article]
    [Google Scholar]
  34. Bowman S, Kalyuzhnaya K. Genus Methylomicrobium. Proteobacteria/Gammaproteobacteria/Methylococcales/Methylocystaceae. Bergey’s Manual of Systematics of Archaea and Bacteria John Wiley & Sons, Ltd; 2015 pp 10–11
    [Google Scholar]
  35. Bowman JP, Sly LI, Cox JM, Hayward AC. Methylomonas fodinarum sp. nov. and Methylomonas aurantiaca sp.nov.: two closely related type I obligate methanotrophs. Syst Appl Microbiol 1990; 13:279–287 [View Article]
    [Google Scholar]
  36. Omel‘chenko MV, Vasil’eva LV, Zavarzin GA, Savel‘eva ND, Lysenko AM et al. A novel psychrophilic methanotroph of the genus Methylobacter . Mikrobiologiya 1996; 65:384–389
    [Google Scholar]
  37. Kalyuzhnaya MG, Khmelenina VN, Kotelnikova S, Holmquist L, Pedersen K et al. Methylomonas scandinavica sp. nov., a new methanotrophic psychrotrophic bacterium isolated from deep igneous rock ground water of Sweden. Syst Appl Microbiol 1999; 22:565–572 [View Article]
    [Google Scholar]
  38. Kaluzhnaya M, Khmelenina V, Eshinimaev B, Suzina N, Nikitin D et al. Taxonomic characterization of new alkaliphilic and alkalitolerant methanotrophs from soda lakes of the southeastern Transbaikal region and description of Methylomicrobium buryatense sp.nov. Syst Appl Microbiol 2001; 24:166–176 [View Article]
    [Google Scholar]
  39. Kalyuzhnaya MG, Stolyar SM, Auman AJ, Lara JC, Lidstrom ME et al. Methylosarcina lacus sp. nov., a methanotroph from lake Washington, Seattle, USA, and emended description of the genus Methylosarcina . Int J Syst Evol Microbiol 2005; 55:2345–2350 [View Article]
    [Google Scholar]
  40. Wartiainen I, Hestnes AG, McDonald IR, Svenning MM. Methylobacter tundripaludum sp. nov., a methane-oxidizing bacterium from Arctic wetland soil on the Svalbard islands, Norway (78° N). Int J Syst Evol Microbiol 2006; 56:109–113 [View Article]
    [Google Scholar]
  41. Rahalkar M, Bussmann I, Schink B. Methylosoma difficile gen. nov., sp. nov., a novel methanotroph enriched by gradient cultivation from littoral sediment of lake Constance. Int J Syst Evol Microbiol 2007; 57:1073–1080 [View Article]
    [Google Scholar]
  42. Oshkin IY, Belova SE, Danilova OV, Miroshnikov KK, Rijpstra WIC et al. Methylovulum psychrotolerans sp. nov., a cold-adapted methanotroph from low-temperature terrestrial environments, and emended description of the genus Methylovulum . Int J Syst Evol Microbiol 2016; 66:2417–2423 [View Article]
    [Google Scholar]
  43. Kalyuzhnaya MG, Khmelenina V, Eshinimaev B, Sorokin D, Fuse H et al. Classification of halo(alkali)philic and halo(alkali)tolerant methanotrophs provisionally assigned to the genera Methylomicrobium and Methylobacter and emended description of the genus Methylomicrobium . Int J Syst Evol Microbiol 2008; 58:591–596 [View Article]
    [Google Scholar]
  44. Danilova OV, Kulichevskaya IS, Rozova ON, Detkova EN, Bodelier PLE et al. Methylomonas paludis sp. nov., the first acid-tolerant member of the genus Methylomonas, from an acidic wetland. Int J Syst Evol Microbiol 2013; 63:2282–2289 [View Article]
    [Google Scholar]
  45. Iguchi H, Yurimoto H, Sakai Y. Methylovulum miyakonense gen. nov., sp. nov., a type I methanotroph isolated from forest soil. Int J Syst Evol Microbiol 2011; 61:810–815 [View Article]
    [Google Scholar]
  46. Ogiso T, Ueno C, Dianou D, Huy TV, Katayama A et al. Methylomonas koyamae sp. nov., a type I methane-oxidizing bacterium from floodwater of a rice paddy field. Int J Syst Evol Microbiol 2012; 62:1832–1837 [View Article]
    [Google Scholar]
  47. Hirayama H, Fuse H, Abe M, Miyazaki M, Nakamura T et al. Methylomarinum vadi gen. nov., sp. nov., a methanotroph isolated from two distinct marine environments. Int J Syst Evol Microbiol 2013; 63:1073–1082 [View Article]
    [Google Scholar]
  48. Hoefman S, Heylen K, De Vos P. Methylomonas lenta sp. nov., a methanotroph isolated from manure and a denitrification tank. Int J Syst Evol Microbiol 2014; 64:1210–1217 [View Article]
    [Google Scholar]
  49. Deutzmann JS, Hoppert M, Schink B. Characterization and phylogeny of a novel methanotroph, Methyloglobulus morosus gen. nov., spec. nov. Syst Appl Microbiol 2014; 37:165–169 [View Article]
    [Google Scholar]
  50. Tavormina PL, Hatzenpichler R, McGlynn S, Chadwick G, Dawson KS et al. Methyloprofundus sedimenti gen. nov., sp. nov., an obligate methanotroph from ocean sediment belonging to the 'deep sea-1' clade of marine methanotrophs. Int J Syst Evol Microbiol 2015; 65:251–259 [View Article]
    [Google Scholar]
  51. Whittenbury R, Krieg NR. Bergey's Manual of Systematic Bacteriology 1, 1st ed. Baltimore: The Williams & Wilkins Co; 1984 pp 256–261
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004064
Loading
/content/journal/ijsem/10.1099/ijsem.0.004064
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error