1887

Abstract

Three Gram-stain-positive bacterial strains, designated X0750, X0278 and X0401, isolated from traditional yogurt in Tibet Autonomous Region, PR China, were characterized by a polyphasic approach, including sequence analyses of the 16S rRNA gene and three housekeeping genes (, and ), determination of average nucleotide identity (ANI) and average amino acid identity (AAI), DNA–DNA hybridization (DDH), fatty acid methyl ester (FAME) analysis and phenotypic characterization. Strain X0750 was phylogenetically related to the type strains of , , , , , , and , having 94.4–100 % 16S rRNA gene sequence similarities, 76.7–90.0 %  gene sequence similarities, 88.9–99.4 %  gene sequence similarities and 77.6–92.8 %  gene sequence similarities, respectively. ANI, DDH and AAI values between strain X0750 and type strains of phylogenetically related species were less than 90.4, 40.9 and 92.8 % respectively, confirming that strain X0750 represents a novel species within the genus . Based upon the data obtained in the present study, a novel species, sp. nov., is proposed and the type strain is X0750(=NCIMB 15192=CCM 8924=LMG 31184=CCTCC AB 2018403).

Funding
This study was supported by the:
  • the Agricultural Science and Technology Innovation Program, China (ASTIP) and the Building of Modern Agricultural Industry (Bees) R&D Systems in China (Award NYCYTI-43-KXJ17)
    • Principle Award Recipient: Wen Li Tian
  • National Natural Science Foundation of China (Award 31972087)
    • Principle Award Recipient: Wen Li Tian
  • National Natural Science Foundation of China (Award 31471594)
    • Principle Award Recipient: Chun Tao Gu
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004062
2020-02-25
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/4/2485.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004062&mimeType=html&fmt=ahah

References

  1. Ludwig W, Schleifer KH, Whitman WB et al. Taxonomic outline of the phylum Firmicutes . In De Vos P, Garrity G, Jones D, Krieg NR, Ludwig W et al. (editors) Bergey’s Manual of Systematic Bacteriology New York: Springer; 2009 pp 15–17
    [Google Scholar]
  2. Collins MD, Samelis J, Metaxopoulos J, Wallbanks S. Taxonomic studies on some leuconostoc-like organisms from fermented sausages: description of a new genus Weissella for the Leuconostoc paramesenteroides group of species. J Appl Bacteriol 1993; 75:595–603 [View Article]
    [Google Scholar]
  3. Validation of the publication of new names and new combinations previously effectively published outside the IJSB: list no. 49. Int J Syst Bacteriol 1994; 44:370–371 [View Article]
    [Google Scholar]
  4. Björkroth J, Dicks LMT, Holzapfel WH et al. Genus III. Weissella Collins, Samelis, Metaxopoulos and Wallbanks 1994, 370VP. In De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W et al. (editors) Bergey’s Manual of Systematic Bacteriology 3, 2nd edn. Berlin: Springer; 2009 pp 643–654
    [Google Scholar]
  5. Padonou SW, Schillinger U, Nielsen DS, Franz CMAP, Hansen M et al. Weissella beninensis sp. nov., a motile lactic acid bacterium from submerged cassava fermentations, and emended description of the genus Weissella . Int J Syst Evol Microbiol 2010; 60:2193–2198 [View Article]
    [Google Scholar]
  6. Snauwaert I, Papalexandratou Z, De Vuyst L, Vandamme P. Characterization of strains of Weissella fabalis sp. nov. and Fructobacillus tropaeoli from spontaneous cocoa bean fermentations. Int J Syst Evol Microbiol 2013; 63:1709–1716 [View Article]
    [Google Scholar]
  7. De Bruyne K, Camu N, De Vuyst L, Vandamme P. Weissella fabaria sp. nov., from a Ghanaian cocoa fermentation. Int J Syst Evol Microbiol 2010; 60:1999–2005 [View Article]
    [Google Scholar]
  8. De Bruyne K, Camu N, Lefebvre K, De Vuyst L, Vandamme P. Weissella ghanensis sp. nov., isolated from a Ghanaian cocoa fermentation. Int J Syst Evol Microbiol 2008; 58:2721–2725 [View Article]
    [Google Scholar]
  9. Lee S-H, Ku H-J, Ahn M-J, Hong J-S, Lee SH et al. Weissella jogaejeotgali sp. nov., isolated from jogae jeotgal, a traditional Korean fermented seafood. Int J Syst Evol Microbiol 2015; 65:4674–4681 [View Article]
    [Google Scholar]
  10. Lee J-S, Lee KC, Ahn J-S, Mheen T-I, Pyun Y-R et al. Weissella koreensis sp. nov., isolated from kimchi. Int J Syst Evol Microbiol 2002; 52:1257–1261 [View Article]
    [Google Scholar]
  11. Tohno M, Kitahara M, Inoue H, Uegaki R, Irisawa T et al. Weissella oryzae sp. nov., isolated from fermented rice grains. Int J Syst Evol Microbiol 2013; 63:1417–1420 [View Article]
    [Google Scholar]
  12. Tanasupawat S, Shida O, Okada S, Komagata K. Lactobacillus acidipiscis sp. nov. and Weissella thailandensis sp. nov., isolated from fermented fish in Thailand. Int J Syst Evol Microbiol 2000; 50 Pt 4:1479–1485 [View Article]
    [Google Scholar]
  13. Björkroth KJ, Schillinger U, Geisen R, Weiss N, Hoste B et al. Taxonomic study of Weissella confusa and description of Weissella cibaria sp. nov., detected in food and clinical samples. Int J Syst Evol Microbiol 2002; 52:141–148 [View Article]
    [Google Scholar]
  14. Kandler O, Weiss N. Genus Lactobacillus beijerinck 1901, 212AL. In Sneath PHA, Mair NS, Sharpe ME, Holt JG. (editors) Bergey’s Manual of Systematic Bacteriology 2 Baltimore: Williams & Wilkins; 1986 pp 1209–1234
    [Google Scholar]
  15. Gu CT, Li CY, Yang LJ, Huo GC. Lactobacillus heilongjiangensis sp. nov., isolated from Chinese pickle. Int J Syst Evol Microbiol 2013; 63:4094–4099 [View Article]
    [Google Scholar]
  16. An D, Cai S, Dong X. Actinomyces ruminicola sp. nov., isolated from cattle rumen. Int J Syst Evol Microbiol 2006; 56:2043–2048 [View Article]
    [Google Scholar]
  17. Naser SM, Thompson FL, Hoste B, Gevers D, Dawyndt P et al. Application of multilocus sequence analysis (MLSA) for rapid identification of Enterococcus species based on rpoA and pheS genes. Microbiology 2005; 151:2141–2150 [View Article]
    [Google Scholar]
  18. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22:4673–4680 [View Article]
    [Google Scholar]
  19. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article]
    [Google Scholar]
  20. Kishino H, Hasegawa M. Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in hominoidea. J Mol Evol 1989; 29:170–179 [View Article]
    [Google Scholar]
  21. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article]
    [Google Scholar]
  22. Naser SM, Dawyndt P, Hoste B, Gevers D, Vandemeulebroecke K et al. Identification of lactobacilli by pheS and rpoA gene sequence analyses. Int J Syst Evol Microbiol 2007; 57:2777–2789 [View Article]
    [Google Scholar]
  23. De Bruyne K, Franz CMAP, Vancanneyt M, Schillinger U, Mozzi F et al. Pediococcus argentinicus sp. nov. from Argentinean fermented wheat flour and identification of Pediococcus species by pheS, rpoA and atpA sequence analysis. Int J Syst Evol Microbiol 2008; 58:2909–2916 [View Article]
    [Google Scholar]
  24. De Bruyne K, Schillinger U, Caroline L, Boehringer B, Cleenwerck I et al. Leuconostoc holzapfelii sp. nov., isolated from Ethiopian coffee fermentation and assessment of sequence analysis of housekeeping genes for delineation of Leuconostoc species. Int J Syst Evol Microbiol 2007; 57:2952–2959 [View Article]
    [Google Scholar]
  25. Kim M, Oh H-S, Park S-C, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article]
    [Google Scholar]
  26. Bringel F, Castioni A, Olukoya DK, Felis GE, Torriani S et al. Lactobacillus plantarum subsp. argentoratensis subsp. nov., isolated from vegetable matrices. Int J Syst Evol Microbiol 2005; 55:1629–1634 [View Article]
    [Google Scholar]
  27. Coil D, Jospin G, Darling AE. A5-miseq: an updated pipeline to assemble microbial genomes from Illumina MiSeq data. Bioinformatics 2015; 31:587–589 [View Article]
    [Google Scholar]
  28. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article]
    [Google Scholar]
  29. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article]
    [Google Scholar]
  30. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article]
    [Google Scholar]
  31. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 2017; 110:1281–1286 [View Article]
    [Google Scholar]
  32. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article]
    [Google Scholar]
  33. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article]
    [Google Scholar]
  34. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article]
    [Google Scholar]
  35. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article]
    [Google Scholar]
  36. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994; 44:846–849 [View Article]
    [Google Scholar]
  37. Besemer J, Lomsadze A, Borodovsky M. GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res 2001; 29:2607–2618 [View Article]
    [Google Scholar]
  38. Konstantinidis KT, Tiedje JM. Towards a genome-based taxonomy for prokaryotes. J Bacteriol 2005; 187:6258–6264 [View Article]
    [Google Scholar]
  39. Mattarelli P, Holzapfel W, Franz CMAP, Endo A, Felis GE et al. Recommended minimal standards for description of new taxa of the genera Bifidobacterium, Lactobacillus and related genera. Int J Syst Evol Microbiol 2014; 64:1434–1451 [View Article]
    [Google Scholar]
  40. Krieg NR, Padgett PJ. Phenotypic and physiological characterization methods. Methods Microbiol 2011; 38:15–60
    [Google Scholar]
  41. Gordon LP, Damm MA, Anderson JD. Rapid presumptive identification of streptococci directly from blood cultures by serologic tests and the L-pyrrolidonyl-beta-naphthylamide reaction. J Clin Microbiol 1987; 25:238–241 [View Article]
    [Google Scholar]
  42. Miyashita M, Tanaka N, Chaipitakchonlatarn W, Tanasupawat S, Kamakura Y, Yukphan P, Malimas T, Sugimoto M et al. Lactobacillus plajomi sp. nov. and Lactobacillus modestisalitolerans sp. nov., isolated from traditional fermented foods. Int J Syst Evol Microbiol 2015; 65:2485–2490 [View Article]
    [Google Scholar]
  43. Hasegawa T, Takizawa M, Tanida S. A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 1983; 29:319–322 [View Article]
    [Google Scholar]
  44. Tak EJ, Kim HS, Lee J-Y, Kang W, Hyun D-W et al. Vagococcus martis sp. nov., isolated from the small intestine of a marten, Martes flavigula . Int J Syst Evol Microbiol 2017; 67:3398–3402 [View Article]
    [Google Scholar]
  45. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101 Newark, DE, USA: Microbial ID Inc; 1990
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004062
Loading
/content/journal/ijsem/10.1099/ijsem.0.004062
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error