1887

Abstract

A Gram-stain-positive, coccus-shaped, non-motile bacterium, designated CF-49, was isolated from the cloacal content of a snow finch, which was incidentally captured in a plateau pika burrow on the Qinghai–Tibet Plateau, PR China. Analysis of the 16S rRNA gene sequence showed that strain CF-49 was closely related to CCUG 51432 (96.5 % similarity), NCFB 2497 (96.0 %) and CCUG 39187 (95.9 %), whereas the similarity to another isolate (CF-210) was 99.9 %. Strains CF-49 and CF-210 grew optimally at 37 °C and pH 7.0 and in the presence of 0.5 % (w/v) NaCl. Acid was produced from -acetylglucosamine, cellobiose, -fructose, -glucose, -mannose, -mannitol, maltose, -ribose and salicin. The cell-wall peptidoglycan type was A4α (-Lys-Asp). The major cellular fatty acids (>10 %) were C (35.6 %), C (17.3 %), C ω9 (16.2 %) and C ω9 (10.6 %). The predominant respiratory quinone was menaquinone MK-7 (68.8 %). The G+C content of the genomic DNA was 35.9 mol%. Digital DNA–DNA hybridization of strain CF-49 with DSM 5731, CCUG 51432and CCUG 39187 resulted in relatedness values of 21.4, 23.3 and 24.6 %, respectively. Based on results from polyphasic analyses, our two isolates are proposed to represent a novel species in the genus , with the name . The type strain is CF-49 (=CGMCC 1.6436=GDMCC 1.1588=JCM 33477).

Funding
This study was supported by the:
  • Jianguo Xu , Chinese Academy of Medical Sciences and Sanming Project of Medicine in Shenzhen , (Award SZSM201811071)
  • Jianguo Xu , Research Units of Discovery of Unknown Bacteria and Function , (Award 2018RU010)
  • Zhihong Ren , National Science and Technology Major Project of China , (Award 2018ZX10305409-003)
  • Jing Yang , National Science and Technology Major Project of China , (Award 2018ZX10712001-007)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004061
2020-03-20
2020-06-04
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/4/2493.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004061&mimeType=html&fmt=ahah

References

  1. Collins MD, Ash C, Farrow JA, Wallbanks S, Williams AM. 16S Ribosomal ribonucleic acid sequence analyses of lactococci and related taxa. Description of Vagococcus fluvialis gen. nov., sp. nov. J Appl Bacteriol 1989; 67:453–460 [CrossRef]
    [Google Scholar]
  2. Teixeira LM, Carvalho MG, Merquior VL, Steigerwalt AG, Brenner DJ et al. Phenotypic and genotypic characterization of Vagococcus fluvialis, including strains isolated from human sources. J Clin Microbiol 1997; 35:2778–2781 [CrossRef]
    [Google Scholar]
  3. Pot B, Devriese LA, Hommez J, Miry C, Vandemeulebroecke K et al. Characterization and identification of Vagococcus fluvialis strains isolated from domestic animals. J Appl Bacteriol 1994; 77:362–369 [CrossRef]
    [Google Scholar]
  4. Wallbanks S, Martinez-Murcia AJ, Fryer JL, Phillips BA, Collins MD. 16S rRNA sequence determination for members of the genus Carnobacterium and related lactic acid bacteria and description of Vagococcus salmoninarum sp. nov. Int J Syst Bacteriol 1990; 40:224–230 [CrossRef]
    [Google Scholar]
  5. Lawson PA, Foster G, Falsen E, Ohlén M, Collins MD. Vagococcus lutrae sp. nov., isolated from the common otter (Lutra lutra). Int J Syst Bacteriol 1999; 49 Pt 3:1251–1254 [CrossRef]
    [Google Scholar]
  6. Hoyles L, Lawson PA, Foster G, Falsen E, Ohlén M et al. Vagococcus fessus sp. nov., isolated from a seal and a harbour porpoise. Int J Syst Evol Microbiol 2000; 50 Pt 3:1151–1154 [CrossRef]
    [Google Scholar]
  7. Shewmaker PL, Steigerwalt AG, Morey RE, Carvalho G, Elliott JA et al. Vagococcus carniphilus sp. nov., isolated from ground beef. Int J Syst Evol Microbiol 2004; 54:1505–1510 [CrossRef]
    [Google Scholar]
  8. Lawson PA, Falsen E, Cotta MA, Whitehead TR. Vagococcus elongatus sp. nov., isolated from a swine-manure storage pit. Int J Syst Evol Microbiol 2007; 57:751–754 [CrossRef]
    [Google Scholar]
  9. Jaffrès E, Prévost H, Rossero A, Joffraud J-J, Dousset X. Vagococcus penaei sp. nov., isolated from spoilage microbiota of cooked shrimp (Penaeus vannamei). Int J Syst Evol Microbiol 2010; 60:2159–2164 [CrossRef]
    [Google Scholar]
  10. Wang L, Cui Y-S, Kwon CS, Lee S-T, Lee J-S et al. Vagococcus acidifermentans sp. nov., isolated from an acidogenic fermentation bioreactor. Int J Syst Evol Microbiol 2011; 61:1123–1126 [CrossRef]
    [Google Scholar]
  11. Killer J, Švec P, Sedlácek I, Cernohlávková J, Benada O et al. Vagococcus entomophilus sp. nov., from the digestive tract of a wasp (Vespula vulgaris). Int J Syst Evol Microbiol 2014; 64:731–737 [CrossRef]
    [Google Scholar]
  12. Sundararaman A, Srinivasan S, Lee S-S. Vagococcus humatus sp. nov., isolated from soil beneath a decomposing pig carcass. Int J Syst Evol Microbiol 2017; 67:330–335 [CrossRef]
    [Google Scholar]
  13. Tak EJ, Kim HS, Lee J-Y, Kang W, Hyun D-W et al. Vagococcus martis sp. nov., isolated from the small intestine of a marten, Martes flavigula . Int J Syst Evol Microbiol 2017; 67:3398–3402 [CrossRef]
    [Google Scholar]
  14. Wullschleger S, Jans C, Seifert C, Baumgartner S, Lacroix C et al. Vagococcus teuberi sp. nov., isolated from the Malian artisanal sour milk fènè. Syst Appl Microbiol 2018; 41:65–72 [CrossRef]
    [Google Scholar]
  15. Shewmaker PL, Whitney AM, Gulvik CA, Humrighouse BW, Gartin J et al. Vagococcus bubulae sp. nov., isolated from ground beef, and Vagococcus vulneris sp. nov., isolated from a human foot wound. Int J Syst Evol Microbiol 2019; 69:2268–2276 [CrossRef]
    [Google Scholar]
  16. Sorroza L, Padilla D, Acosta F, Román L, Grasso V et al. Characterization of the probiotic strain Vagococcus fluvialis in the protection of European sea bass (Dicentrarchus labrax) against vibriosis by Vibrio anguillarum . Vet Microbiol 2012; 155:369–373 [CrossRef]
    [Google Scholar]
  17. Garcia V, Abat C, Rolain J-M. Report of the first Vagococcus lutrae human infection, Marseille, France. New Microbes New Infect 2016; 9:56–57 [CrossRef]
    [Google Scholar]
  18. Liang G, Zhang W, Lei FM, Yin ZH, Huang Y et al. Comparison of Cytb and COI gene sequences from 15 species in Passeriformes . Acta Zootax Sin 2007; 32:613–620
    [Google Scholar]
  19. Neilan BA, Wilton AN, Jacobs D. A universal procedure for primer labelling of amplicons. Nucleic Acids Res 1997; 25:2938–2939 [CrossRef]
    [Google Scholar]
  20. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [CrossRef]
    [Google Scholar]
  21. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [CrossRef]
    [Google Scholar]
  22. Rzhetsky A, Nei M. A simple method for estimating and testing minimum evolution trees. Mol Biol Evol 1992; 9:945–967
    [Google Scholar]
  23. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [CrossRef]
    [Google Scholar]
  24. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [CrossRef]
    [Google Scholar]
  25. Li D, Liu C-M, Luo R, Sadakane K, Lam T-W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 2015; 31:1674–1676 [CrossRef]
    [Google Scholar]
  26. Berlin K, Koren S, Chin C-S, Drake JP, Landolin JM et al. Assembling large genomes with single-molecule sequencing and locality-sensitive hashing. Nat Biotechnol 2015; 33:623–630 [CrossRef]
    [Google Scholar]
  27. Price MN, Dehal PS, Arkin AP. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol 2009; 26:1641–1650 [CrossRef]
    [Google Scholar]
  28. Chen C, Zhang W, Zheng H, Lan R, Wang H et al. Minimum core genome sequence typing of bacterial pathogens: a unified approach for clinical and public health microbiology. J Clin Microbiol 2013; 51:2582–2591 [CrossRef]
    [Google Scholar]
  29. Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 2012; 28:3150–3152 [CrossRef]
    [Google Scholar]
  30. Auch AF, von Jan M, Klenk H-P, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134 [CrossRef]
    [Google Scholar]
  31. Austrian R. The Gram stain and the etiology of lobar pneumonia, an historical note. Bacteriol Rev 1960; 24:261–265 [CrossRef]
    [Google Scholar]
  32. Xu Y, Xu X, Lan R, Xiong Y, Ye C et al. An O island 172 encoded RNA helicase regulates the motility of Escherichia coli O157:H7. PLoS One 2013; 8:e64211 [CrossRef]
    [Google Scholar]
  33. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids 101, MIDI Technical Note. 1990 pp 1–7
    [Google Scholar]
  34. Schleifer KH, Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 1972; 36:407–477 [CrossRef]
    [Google Scholar]
  35. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria . J Gen Microbiol 1977; 100:221–230 [CrossRef]
    [Google Scholar]
  36. Kroppenstedt RM. Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 1982; 5:2359–2367 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004061
Loading
/content/journal/ijsem/10.1099/ijsem.0.004061
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error