1887

Abstract

As the current episode of Acute Oak Decline (AOD) continues to affect native British oak in the United Kingdom, ongoing isolations from symptomatic and healthy oak have yielded a large species population. These strains could be divided into taxa representing three potential novel species. Recently, two of these taxa were described as novel species in the lineage. Here, we demonstrate using a polyphasic approach that the third taxon represents another novel species. The 16S rRNA gene sequencing assigned the strains to the lineage, while multilocus sequence analysis (based on partial , and sequences) placed the 13 strains in a single cluster on the border of the group. Whole genome intra-species comparisons (based on average nucleotide identity and DNA–DNA hybridization) confirmed that the strains belong to a single taxon, while the inter-species comparisons with closest phylogenetic relatives yielded similarity values below the accepted species threshold. Therefore, we propose these strains as a novel species, namely sp. nov., with the type strain FRB 229 (P4C=LMG 31089=NCPPB 4674). The phylogenetic analyses performed in this study highlighted the difficulties in assigning novel species to the genus due to its polyphyletic nature and close relationship to the genus . We further propose that a thorough taxonomic re-evaluation of the genus is essential and should be performed in the near future.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004055
2020-02-18
2020-06-02
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/4/2426.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004055&mimeType=html&fmt=ahah

References

  1. Brady C, Denman S, Kirk S, Venter S, Rodríguez-Palenzuela P et al. Description of Gibbsiella quercinecans gen. nov., sp. nov., associated with Acute Oak Decline. Syst Appl Microbiol 2010; 33:444–450 [CrossRef]
    [Google Scholar]
  2. Brady CL, Cleenwerck I, Denman S, Venter SN, Rodríguez-P P et al. Proposal to reclassify Brenneria quercina (Hildebrand and Schroth 1967) Hauben, et al. 1999 into a new genus, Lonsdalea gen. nov., as Lonsdalea quercina comb. nov., descriptions of Lonsdalea quercina subsp. quercina comb. nov., Lonsdalea quercina subsp. ib . Int J Syst Evol Microbiol 2012; 62:1592–1602
    [Google Scholar]
  3. Denman S, Brady C, Kirk S, Cleenwerck I, Venter S et al. Brenneria goodwinii sp. nov., associated with acute oak decline in the UK. Int J Syst Evol Microbiol 2012; 62:2451–2456 [CrossRef]
    [Google Scholar]
  4. Brady C, Hunter G, Kirk S, Arnold D, Denman S. Description of Brenneria roseae sp. nov. and two subspecies, Brenneria roseae subspecies roseae ssp. nov and Brenneria roseae subspecies americana ssp. nov. isolated from symptomatic oak. Syst Appl Microbiol 2014; 37:396–401 [CrossRef]
    [Google Scholar]
  5. Brady C, Hunter G, Kirk S, Arnold D, Denman S. Gibbsiella greigii sp. nov., a novel species associated with oak decline in the USA. Syst Appl Microbiol 2014; 37:417–422 [CrossRef]
    [Google Scholar]
  6. Brady C, Hunter G, Kirk S, Arnold D, Denman S. Rahnella victoriana sp. nov., Rahnella bruchi sp. nov., Rahnella woolbedingensis sp. nov., classification of Rahnella genomospecies 2 and 3 as Rahnella variigena sp. nov. and Rahnella inusitata sp. nov., respectively and emended description of the genus Rahnella . Syst Appl Microbiol 2014; 37:545–552 [CrossRef]
    [Google Scholar]
  7. Bueno-Gonzalez V, Brady C, Denman S, Plummer S, Allainguillaume J et al. Pseudomonas daroniae sp. nov. and Pseudomonas dryadis sp. nov., isolated from pedunculate oak affected by acute oak decline in the UK. Int J Syst Evol Microbiol 2019; 159378:1–9
    [Google Scholar]
  8. Denman S, Brown N, Kirk S, Jeger M, Webber J. A description of the symptoms of acute oak decline in Britain and a comparative review on causes of similar disorders on oak in Europe. Forestry 2014; 87:535–551 [CrossRef]
    [Google Scholar]
  9. Denman S, Doonan J, Ransom-Jones E, Broberg M, Plummer S et al. Microbiome and infectivity studies reveal complex polyspecies tree disease in acute oak decline. Isme J 2018; 12:386–399 [CrossRef]
    [Google Scholar]
  10. Denman S, Plummer S, Kirk S, Peace A, McDonald JE. Isolation studies reveal a shift in the cultivable microbiome of oak affected with acute oak decline. Syst Appl Microbiol 2016; 39:484–490 [CrossRef]
    [Google Scholar]
  11. Sapp M, Lewis E, Moss S, Barrett B, Kirk S et al. Metabarcoding of bacteria associated with the acute oak decline syndrome in England. Forests 2016; 7:95 [CrossRef]
    [Google Scholar]
  12. Peix A, Ramírez-Bahena M-H, Velázquez E. The current status on the taxonomy of Pseudomonas revisited: An update. Infection, Genetics and Evolution 2018; 57:106–116 [CrossRef]
    [Google Scholar]
  13. Niemann S, Pühler A, Tichy HV, Simon R, Selbitschka W. Evaluation of the resolving power of three different DNA fingerprinting methods to discriminate among isolates of a natural Rhizobium meliloti population. J Appl Microbiol 1997; 82:477–484 [CrossRef]
    [Google Scholar]
  14. Beiki F, Busquets A, Gomila M, Rahimian H, Lalucat J et al. New Pseudomonas spp. are pathogenic to citrus. PLoS One 2016; 11:e0148796–16 [CrossRef]
    [Google Scholar]
  15. Mulet M, Bennasar A, Lalucat J, Garcı E. An rpo-based PCR procedure for the identification of Pseudomonas species and for their detection in environmental samples; 2009; 23140–147
  16. Ait Tayeb L, Ageron E, Grimont F, Grimont PAD. Molecular phylogeny of the genus Pseudomonas based on rpoB sequences and application for the identification of isolates. Res Microbiol 2005; 156:763–773 [CrossRef]
    [Google Scholar]
  17. Yoon S, Ha S, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud : a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies; 20191613–1617
  18. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215:403–410 [CrossRef]
    [Google Scholar]
  19. Hall TA. Bioedit: a User-Friendly Biological Sequence Alignment Editor and Analysis Program for Windows 95/98/nt. In: Nucleic Acids Symposium Series 1999 pp 95–98
    [Google Scholar]
  20. Vaidya G, Lohman DJ, Meier R. SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 2011; 27:171–180 [CrossRef]
    [Google Scholar]
  21. Lefort V, Longueville J-E, Gascuel O. Sms: smart model selection in PhyML. Mol Biol Evol 2017; 34:2422–2424 [CrossRef]
    [Google Scholar]
  22. Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 2010; 59:307–321 [CrossRef]
    [Google Scholar]
  23. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [CrossRef]
    [Google Scholar]
  24. Mulet M, Lalucat J, García-Valdés E. DNA sequence-based analysis of the Pseudomonas species. Environ Microbiol 2010; 12:1513–1530
    [Google Scholar]
  25. Gomila M, Peña A, Mulet M, Lalucat J, García-Valdés E. Phylogenomics and systematics in Pseudomonas . Front Microbiol 2015; 6:1–13 [CrossRef]
    [Google Scholar]
  26. Versalovic J, Schneider M, de Bruijn F, Lupski JR. Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods Mol Cell Biol 1994; 5:25–40
    [Google Scholar]
  27. Versalovic J, Koeuth T, Lupski R. Distribution of repetitive DNA sequences in eubacteria and application to finerpriting of bacterial enomes. Nucleic Acids Res 1991; 19:6823–6831 [CrossRef]
    [Google Scholar]
  28. Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV. Dna polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 1990; 18:6531–6535 [CrossRef]
    [Google Scholar]
  29. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics 2014; 30:2114–2120 [CrossRef]
    [Google Scholar]
  30. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J et al. The sequence Alignment/Map format and SAMtools. Bioinformatics 2009; 25:2078–2079 [CrossRef]
    [Google Scholar]
  31. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 2010; 26:841–842 [CrossRef]
    [Google Scholar]
  32. Li H, Durbin R. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics 2010; 26:589–595 [CrossRef]
    [Google Scholar]
  33. Nurk S, Bankevich A, Antipov D, Gurevich A, Korobeynikov A et al. Assembling genomes and mini-metagenomes from highly chimeric reads. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 2013 pp 158–170
    [Google Scholar]
  34. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [CrossRef]
    [Google Scholar]
  35. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [CrossRef]
    [Google Scholar]
  36. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [CrossRef]
    [Google Scholar]
  37. Goris J, Klappenbach JA, Vandamme P, Coenye T, Konstantinidis KT et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [CrossRef]
    [Google Scholar]
  38. King EO, Ward MK, Raney DE. Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med 1954; 44:301–307
    [Google Scholar]
  39. Palleroni NJ. Pseudomonas. Bergey’s Manual of Systematics of Archaea and Bacteria 2015 pp 58–69
    [Google Scholar]
  40. Romanenko LA, Uchino M, Falsen E, Lysenko AM, Zhukova NV et al. Pseudomonas xanthomarina sp. nov., a novel bacterium isolated from marine ascidian. J Gen Appl Microbiol 2005; 51:65–71 [CrossRef]
    [Google Scholar]
  41. Anwar N, Rozahon M, Zayadan B, Mamtimin H, Abdurahman M et al. Pseudomonas tarimensis sp. nov., an endophytic bacteria isolated from Populus euphratica . Int J Syst Evol Microbiol 2017; 67:4372–4378 [CrossRef]
    [Google Scholar]
  42. Anzai Y, Kim H, Park JY, Wakabayashi H, Oyaizu H. Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. Int J Syst Evol Microbiol 2000; 50:1563–1589 [CrossRef]
    [Google Scholar]
  43. Young JM, Park D-C. Probable synonymy of the nitrogen-fixing genus Azotobacter and the genus Pseudomonas . Int J Syst Evol Microbiol 2007; 57:2894–2901 [CrossRef]
    [Google Scholar]
  44. Özen AI, Ussery DW. Defining the Pseudomonas genus: where do we draw the line with Azotobacter?. Microb Ecol 2012; 63:239–248 [CrossRef]
    [Google Scholar]
  45. Rediers H, Vanderleyden J, De Mot R. Azotobacter vinelandii: a Pseudomonas in disguise?. Microbiology 2004; 150:1117–1119 [CrossRef]
    [Google Scholar]
  46. Thompson JP, Skerman VBD. Azotobacteraceae: the taxonomy and ecology of the aerobic nitrogen-fixing bacteria London: Academic Press; 1979 p 417
    [Google Scholar]
  47. Kennedy C, Rudnick P, MacDonald ML, Melton T. Azotobacter. Bergey’s Manual of Systematics of Archaea and Bacteria 2015 pp 1–33
    [Google Scholar]
  48. Hesse C, Schulz F, Bull CT, Shaffer BT, Yan Q et al. Genome‐based evolutionary history of Pseudomonas spp. Environ Microbiol 2018; 20:2142–2159 [CrossRef]
    [Google Scholar]
  49. Mulet M, Gomila M, Ramírez A, Lalucat J, Garcia-Valdes E. Pseudomonas nosocomialis sp. nov., isolated from clinical specimens. Int J Syst Evol Microbiol 2019; 69:3392–3398 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004055
Loading
/content/journal/ijsem/10.1099/ijsem.0.004055
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error