1887

Abstract

In 1983, sp. strain 1220 was isolated in Hungary from the phallus lymph of a gander with phallus inflammation. Between 1983 and 2017, sp. 1220 was also identified and isolated from the respiratory tract, liver, ovary, testis, peritoneum and cloaca of diseased geese in several countries. Seventeen studied strains produced acid from glucose and fructose but did not hydrolyse arginine or urea, and all grew under aerobic, microaerophilic and anaerobic conditions at 35 to 37 ˚C in either SP4 or pleuropneumonia-like organism medium supplemented with glucose and serum. Colonies on agar showed a typical fried-egg appearance and transmission electron microscopy revealed a typical mycoplasma cellular morphology. Molecular characterization included analysis of the following genetic loci: 16S rRNA, 23S rRNA, 16S–23S rRNA ITS, , , , , , , , and . The genome was sequenced for type strain 1220. The 16S rRNA gene sequences of studied strains of sp. 1220 shared 99.02–99.19 % nucleotide similarity with strains but demonstrated ≤95.00–96.70 % nucleotide similarity to the 16S rRNA genes of other species of the genus . Phylogenetic, average nucleotide and amino acid identity analyses revealed that the novel species was most closely related to . Based on the genetic data, we propose a novel species of the genus , for which the name sp. nov. is proposed with the type strain 1220 (=ATCC BAA-2147=NCTC 13513=DSM 23982). The G+C content is 26.70 mol%, genome size is 959110 bp.

Keyword(s): waterfowl , Mycoplasma , phylogeny , pathogen and geese
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004052
2020-02-18
2020-03-31
Loading full text...

Full text loading...

References

  1. Razin S, Yogev D, Naot Y. Molecular biology and pathogenicity of mycoplasmas. MMBR 1998;62:1094–1156 [CrossRef]
    [Google Scholar]
  2. Brown DR, Phylum XVI. Tenericutes Murray 1984a, 356VP (Effective publication: Murray 1984b, 33.). Bergey’s Manual of Systematic Bacteriology Springer; 2010; pp567–723
    [Google Scholar]
  3. Stipkovits L, El-Ebeedy AA, Kisary J, Varga L. Mycoplasma infection of geese. I. incidence of mycoplasmas and acholeplasmas in geese. Avian Pathol 1975;4:35–43
    [Google Scholar]
  4. Kisary J, El‐Ebeedy AA, Stipkovits L. Mycoplasma infection of geese II. Studies on pathogenicity of mycoplasmas in goslings and goose and chicken embryos. Avian Pathology 1976;5:15–20 [CrossRef]
    [Google Scholar]
  5. Stipkovits L. The pathogenicity of avian mycoplasmas. Zentralbl Bakteriol Orig A 1979;245:171–183
    [Google Scholar]
  6. Stipkovits L, Varga Z, Dobos-Kovacs M, Santha M. Biochemical and serological examination of some Mycoplasma strains of goose origin. Acta Vet Hung 1984;32:117–125
    [Google Scholar]
  7. Stipkovits L, Vuillaume A, Rousselot D, Larrue P, Bové JM. Isolation and pathogenicity of mycoplasmas from geese. Ann Inst Pasteur Microbiol 1984;135:91–94 [CrossRef]
    [Google Scholar]
  8. Stipkovits L, Bove JM, Rousselot M, Larrue P, Labat M et al. Studies on Mycoplasma infection of laying geese. Avian Pathology 1985;14:57–68 [CrossRef]
    [Google Scholar]
  9. Varga Z, Stipkovits L, Dobos-Kovacs M, Santha M. Investigation of goose mycoplasmas. Arch Exp Veterinarmed 1986;40:105–108
    [Google Scholar]
  10. Stipkovits L, Varga Z, Czifra G, Dobos‐Kovács M. Occurrence of mycoplasmas in geese affected with inflammation of the cloaca and phallus. Avian Pathology 1986;15:289–299 [CrossRef]
    [Google Scholar]
  11. Buntz B, Bradbury JM, Vuillaume A, Rousselot‐Paillet D. Isolation of Mycoplasma gallisepticum from geese. Avian Pathology 1986;15:615–617 [CrossRef]
    [Google Scholar]
  12. Bradbury JM, Vuillaume A, Dupiellet JP, Forrest M, Bind JL et al. Isolation of Mycoplasma cloacale from a number of different avian hosts in great Britain and France. Avian Pathology 1987;16:183–186 [CrossRef]
    [Google Scholar]
  13. Stipkovits L, Varga Z, Glávits R, Ratz F, Molnar Éva. Pathological and immunological studies on goose embryos and one‐day‐old goslings experimentally infected with a Mycoplasma strain of goose origin. Avian Pathology 1987;16:453–468 [CrossRef]
    [Google Scholar]
  14. Stipkovits L, Glavits R, Ivanics E, Szabo E. Additional data on Mycoplasma disease of goslings. Avian Pathology 1993;22:171–176 [CrossRef]
    [Google Scholar]
  15. Hinz K-H, Pfützner H, Behr K-P. Isolation of mycoplasmas from clinically healthy adult breeding geese in Germany. Zentralbl Veterinarmed B 1994;41:145–147 [CrossRef]
    [Google Scholar]
  16. Dobos-Kovács M, Varga Z, Czifra G, Stipkovits L. Salpingitis in geese associated with Mycoplasma sp. strain 1220. Avian Pathology 2009;38:239–243 [CrossRef]
    [Google Scholar]
  17. Shimizu T, Numano K, Uchida K. Isolation and identification of mycoplasmas from various birds: an ecological study. Nihon Juigaku Zasshi 1979;41:273–282 [CrossRef]
    [Google Scholar]
  18. Grózner D, Sulyok KM, Kreizinger Z, Rónai Z, Jánosi S et al. Detection of Mycoplasma anatis, M. anseris, M. cloacale and Mycoplasma sp. 1220 in waterfowl using species-specific PCR assays. PLoS One 2019;14:e0219071 [CrossRef]
    [Google Scholar]
  19. Carnaccini S, Ferguson-Noel NM, Chin RP, Santoro T, Black P et al. A novel Mycoplasma sp. associated with phallus disease in goose breeders: pathological and bacteriological findings. Avian Dis 2016;60:437–443 [CrossRef]
    [Google Scholar]
  20. Stipkovits L, Szathmary S. Mycoplasma infection of ducks and geese. Poult Sci 2012;91:2812–2819 [CrossRef]
    [Google Scholar]
  21. Stipkovits L, Kempf I. Mycoplasmoses in poultry. Rev Sci Tech OIE 1996;15:1495–1525 [CrossRef]
    [Google Scholar]
  22. Benöina D, Tadina T, Dorrer D. Natural infection of geese with Mycoplasma gallisepticum and Mycoplasma synoviae and egg transmission of the mycoplasmas. Avian Pathology 1988;17:925–928 [CrossRef]
    [Google Scholar]
  23. Grózner D, Kreizinger Z, Sulyok KM, Rónai Z, Hrivnák V et al. Antibiotic susceptibility profiles of Mycoplasma sp. 1220 strains isolated from geese in Hungary. BMC Vet Res 2016;12:170 [CrossRef]
    [Google Scholar]
  24. Sprygin AV, Volokhov DV, Irza VN, Drygin VV. Detection and genetic identification of Mycoplasma sp. 1220 in geese in the Russian Federation and Ukraine. S-h. biol. 2012;2:87–95 [CrossRef]
    [Google Scholar]
  25. Brown DR, Whitcomb RF, Bradbury JM. Revised minimal standards for description of new species of the class Mollicutes (division Tenericutes). Int J Syst Evol Microbiol 2007;57:2703–2719 [CrossRef]
    [Google Scholar]
  26. Firrao G, Brown DR. International Committee on Systematics of ProkaryotesSubcommittee on the taxonomy of Mollicutes: minutes of the meetings, July 15th and 19th 2012, toulouse, France. Int J Syst Evol Microbiol 2013;63:2361–2364 [CrossRef]
    [Google Scholar]
  27. Erno H, Stipkovits L. Bovine mycoplasmas: cultural and biochemical studies. I. Acta Vet Scand 1973;14:436–449
    [Google Scholar]
  28. Volokhov DV, Batac F, Gao Y, Miller M, Chizhikov VE. Mycoplasma enhydrae sp. nov. isolated from southern sea otters (Enhydra lutris nereis). Int J Syst Evol Microbiol 2019;69:363–370 [CrossRef]
    [Google Scholar]
  29. Roberts DH. The isolation of an influenza A virus and a Mycoplasma associated with duck sinusitis. Vet Rec 1964;76:470–473
    [Google Scholar]
  30. Volokhov DV, Gulland FM, Gao Y, Chizhikov VE. Ureaplasma miroungigenitalium sp. nov. isolated from northern elephant seals (Mirounga angustirostris) and Ureaplasma zalophigenitalium sp. nov. isolated from California sea lions (Zalophus californianus). Int J Syst Evol Microbiol 2019;4: [CrossRef]
    [Google Scholar]
  31. Harasawa R, Imada Y, Ito M, Koshimizu K, Cassell GH et al. Ureaplasma felinum sp. nov. and Ureaplasma cati sp. nov. isolated from the oral cavities of cats. Int J Syst Bacteriol 1990;40:45–51 [CrossRef]
    [Google Scholar]
  32. Poveda JB. Biochemical characteristics in Mycoplasma identification. Methods Mol Biol 1998;104:69–78
    [Google Scholar]
  33. Bradbury JM. Phosphatase activity in avian mycoplasmas. Res Vet Sci 1979;27:386–387 [CrossRef]
    [Google Scholar]
  34. Volokhov DV, Simonyan V, Davidson MK, Chizhikov VE. Rna polymerase beta subunit (rpoB) gene and the 16S–23S rRNA intergenic transcribed spacer region (its) as complementary molecular markers in addition to the 16S rRNA gene for phylogenetic analysis and identification of the species of the family Mycoplasmataceae. Mol Phylogenet Evol 2012;62:515–528 [CrossRef]
    [Google Scholar]
  35. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef]
    [Google Scholar]
  36. Ochman H, Elwyn S, Moran NA. Calibrating bacterial evolution. Proc Natl Acad Sci USA 1999;96:12638–12643 [CrossRef]
    [Google Scholar]
  37. Lu L, Chen Y, Wang Z, Li X, Chen W et al. The goose genome sequence leads to insights into the evolution of waterfowl and susceptibility to fatty liver. Genome Biol 2015;16:89 [CrossRef]
    [Google Scholar]
  38. Grózner D, Forró B, Kovács Áron Botond, Marton S, Bányai K et al. Complete genome sequences of three Mycoplasma anserisalpingitis (Mycoplasma sp. 1220) strains. Microbiol Resour Announc 2019;8: [CrossRef]
    [Google Scholar]
  39. Volokhov DV, Neverov AA, George J, Kong H, Liu SX et al. Genetic analysis of housekeeping genes of members of the genus Acholeplasma: phylogeny and complementary molecular markers to the 16S rRNA gene. Mol Phylogenet Evol 2007;44:699–710 [CrossRef]
    [Google Scholar]
  40. Adékambi T, Drancourt M, Raoult D. The rpoB gene as a tool for clinical microbiologists. Trends Microbiol 2009;17:37–45 [CrossRef]
    [Google Scholar]
  41. Goris J, Klappenbach JA, Vandamme P, Coenye T, Konstantinidis KT et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007;57:81–91 [CrossRef]
    [Google Scholar]
  42. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018;68:461–466 [CrossRef]
    [Google Scholar]
  43. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009;106:19126–19131 [CrossRef]
    [Google Scholar]
  44. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014;64:346–351 [CrossRef]
    [Google Scholar]
  45. Konstantinidis KT, Tiedje JM. Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci USA 2005;102:2567–2572 [CrossRef]
    [Google Scholar]
  46. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016;32:929–931 [CrossRef]
    [Google Scholar]
  47. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017;110:1281–1286 [CrossRef]
    [Google Scholar]
  48. Medlar AJ, Törönen P, Holm L. AAI-profiler: fast proteome-wide exploratory analysis reveals taxonomic identity, misclassification and contamination. Nucleic Acids Res 2018;46:W479–W485 [CrossRef]
    [Google Scholar]
  49. Konstantinidis KT, Tiedje JM. Towards a genome-based taxonomy for prokaryotes. J Bacteriol 2005;187:6258–6264 [CrossRef]
    [Google Scholar]
  50. Grózner D, Forró B, Sulyok KM, Marton S, Kreizinger Z et al. Complete genome sequences of Mycoplasma anatis, M. anseris, and M. cloacale type strains. Microbiol Resour Announc 2018;7: [CrossRef]
    [Google Scholar]
  51. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14:60 [CrossRef]
    [Google Scholar]
  52. Auch AF, von Jan M, Klenk H-P, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010;2:117–134 [CrossRef]
    [Google Scholar]
  53. Kim K-S, Ko KS, Chang M-W, Hahn TW, Hong SK et al. Use of rpoB sequences for phylogenetic study of Mycoplasma species. FEMS Microbiol Lett 2003;226:299–305 [CrossRef]
    [Google Scholar]
  54. Pettersson B, Tully JG, Bolske G, Johansson KE. Updated phylogenetic description of the Mycoplasma hominis cluster (Weisburg et al. 1989) based on 16S rDNA sequences. Int J Syst Evol Microbiol 2000;50:291–301 [CrossRef]
    [Google Scholar]
  55. Case RJ, Boucher Y, Dahllof I, Holmstrom C, Doolittle WF et al. Use of 16S rRNA and rpoB genes as molecular markers for microbial ecology studies. Appl Environ Microbiol 2007;73:278–288 [CrossRef]
    [Google Scholar]
  56. Mollet C, Drancourt M, Raoult D. rpoB sequence analysis as a novel basis for bacterial identification. Mol Microbiol 1997;26:1005–1011 [CrossRef]
    [Google Scholar]
  57. Volokhov DV, Amselle M, Bodeis-Jones S, Delmonte P, Zhang S et al. Neisseria zalophi sp. nov., isolated from oral cavity of California sea lions (Zalophus californianus). Arch Microbiol 2018;200:819–828 [CrossRef]
    [Google Scholar]
  58. Whittaker P, Keys CE, Brown EW, Fry FS. Differentiation of Enterobacter sakazakii from closely related Enterobacter and Citrobacter species using fatty acid profiles. J Agric Food Chem 2007;55:4617–4623 [CrossRef]
    [Google Scholar]
  59. Delmonte P, Fardin-Kia AR, Rader JI. Separation of fatty acid methyl esters by GC-Online hydrogenation × GC. Anal Chem 2013;85:1517–1524 [CrossRef]
    [Google Scholar]
  60. Brønstad A, Berg A-GT. The role of organizational culture in compliance with the principles of the 3Rs. Lab Anim 2011;40:22–26 [CrossRef]
    [Google Scholar]
  61. Szathmary S, Stipkovits L. Vaccine to prevent mycoplasmal infections in waterfowl US: Patent Application US2016/0082094 A1; 2016
    [Google Scholar]
  62. Huang JF, Pingel H, Guy G, łukaszewicz E, Baéza E et al. A century of progress in waterfowl production, and a history of the WPSA waterfowl working group. Worlds Poult Sci J 2012;68:551–563 [CrossRef]
    [Google Scholar]
  63. Shabbir MZ, Malys T, Ivanov YV, Park J, Shabbir MAB et al. Microbial communities present in the lower respiratory tract of clinically healthy birds in Pakistan. Poult Sci 2015;94:612–620 [CrossRef]
    [Google Scholar]
  64. Johnson TJ, Youmans BP, Noll S, Cardona C, Evans NP et al. A consistent and predictable commercial broiler chicken bacterial microbiota in antibiotic-free production displays strong correlations with performance. Appl Environ Microbiol 2018;84: [CrossRef]
    [Google Scholar]
  65. Czifra G, Varga Z, Dobos-Kovacs M, Stipkovits L. Medication of inflammation of the phallus in geese. Acta Vet Hung 1986;34:211–223
    [Google Scholar]
  66. Honka J, Heino M, Kvist L, Askeyev I, Shaymuratova D et al. Over a thousand years of evolutionary history of domestic geese from Russian archaeological sites, analysed using ancient DNA. Genes 2018;9:367 [CrossRef]
    [Google Scholar]
  67. Yong Y, Liu S, Hua G, Jia R, Zhao Y et al. Identification and functional characterization of Toll-like receptor 2–1 in geese. BMC Vet Res 2015;11:108 [CrossRef]
    [Google Scholar]
  68. Ottenburghs J, Megens H-J, Kraus RHS, Madsen O, van Hooft P et al. A tree of geese: a phylogenomic perspective on the evolutionary history of true geese. Mol Phylogenet Evol 2016;101:303–313 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004052
Loading
/content/journal/ijsem/10.1099/ijsem.0.004052
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error