1887

Abstract

A Gram-stain-positive, motile, facultatively anaerobic, non-sporing, and rod-shaped bacterial strain, designated HF60, was isolated from the Red Maple Lake of Guizhou Province, China. The DNA G+C content of the strain HF60 was 55.0 %. The predominant isoprenoid quinones were identified as MK-7 (56.4 %) and MK-8 (35.7 %). The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and aminophosphoglycolipid. The major fatty acids were anteiso-C, iso-C, C and iso-C. The strain had cell wall peptidoglycan type A3α -Lys-Gly. Phylogenetic analyses based on 16S rRNA gene sequences indicated that strain HF60 belonged to the genus and was most closely related to JCM 13490 (97.2 % 16S rRNA gene sequence similarity), followed by DSM 14481 (97.1 %), DSM 14480 (96.9 %) and NBRC 14763 (94.5 %). The differential phenotypic properties, together with the phylogenetic and genetic distinctiveness indicated that strain HF60 can be considered to represent a novel species of the genus , for which the name sp. nov. is proposed, The type strain is HF60 (=MCCC 1H00336=KCTC 33987).

Funding
This study was supported by the:
  • Xue Meng , National Science and Technology Program during the Twelfth Five-year Plan Period , (Award 2017FY100300)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004048
2020-02-17
2020-06-02
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/4/2359.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004048&mimeType=html&fmt=ahah

References

  1. Collins MD, Lund BM, Farrow JAE, Schleifer KH. Chemotaxonomic study of an alkalophilic bacterium, Exiguobacterium aurantiacum gen. nov., sp. nov. J Gen Microbiol 1983; 129:2037–2042 [CrossRef]
    [Google Scholar]
  2. Gee JM, Lund BM, Metcalf G, Peel JL. Properties of a new group of alkalophilic bacteria. J Gen Microbiol 1980; 117:9–17 [CrossRef]
    [Google Scholar]
  3. Frühling A, Schumann P, Hippe H, Sträubler B, Stackebrandt E. Exiguobacterium undae sp. nov. and Exiguobacterium antarcticum sp. nov. Int J Syst Evol Microbiol 2002; 52:1171–1176
    [Google Scholar]
  4. Yumoto I, Hishinuma-Narisawa M, Hirota K, Shingyo T, Takebe F et al. Exiguobacterium oxidotolerans sp. nov., a novel alkaliphile exhibiting high catalase activity. Int J Syst Evol Microbiol 2004; 54:2013–2017 [CrossRef]
    [Google Scholar]
  5. Kim I-G, Lee M-H, Jung S-Y, Song JJ, Oh T-K et al. Exiguobacterium aestuarii sp. nov. and Exiguobacterium marinum sp. nov., isolated from a tidal flat of the Yellow Sea in Korea. Int J Syst Evol Microbiol 2005; 55:885–889 [CrossRef]
    [Google Scholar]
  6. Chaturvedi P, Shivaji S. Exiguobacterium indicum sp. nov., a psychrophilic bacterium from the Hamta glacier of the Himalayan mountain ranges of India. Int J Syst Evol Microbiol 2006; 56:2765–2770 [CrossRef]
    [Google Scholar]
  7. Mohan Kulshreshtha N, Kumar R, Begum Z, Shivaji S, Kumar A. Exiguobacterium alkaliphilum sp. nov. isolated from alkaline wastewater drained sludge of a beverage factory. Int J Syst Evol Microbiol 2013; 63:4374–4379 [CrossRef]
    [Google Scholar]
  8. Dastager SG, Mawlankar R, Sonalkar V, Thorat MN, Mual P et al. Exiguobacterium enclense sp. nov., isolated from sediment. Int J Syst Evol Microbiol 2015; 65:1611–1616 [CrossRef]
    [Google Scholar]
  9. Liu QQ, Wang Y, Li J, Du ZJ, Chen GJ. Saccharicrinis carchari sp. nov., isolated from a shark, and emended descriptions of the genus Saccharicrinis and Saccharicrinis fermentans. Int J Syst Evol Microbiol 2014; 64:2204–2209 [CrossRef]
    [Google Scholar]
  10. Angiuoli SV, Gussman A, Klimke W, Cochrane G, Field D et al. Toward an Online Repository of Standard Operating Procedures (SOPs) for (Meta)genomic Annotation. OMICS 2008; 12:137–141 [CrossRef]
    [Google Scholar]
  11. Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M et al. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res 2012; 40:D109–D114 [CrossRef]
    [Google Scholar]
  12. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [CrossRef]
    [Google Scholar]
  13. Ko KS, Lee HK, Park MY, Lee KH, Yun YJ et al. Application of RNA polymerase betasubunit gene (rpoB) sequences for the molecular differentiation of Legionella species. J Clin Microbiol 2002; 40:2653–2658
    [Google Scholar]
  14. Yamamoto S, Kasai H, Arnold DL, Jackson RW, Vivian A et al. Phylogeny of the genus Pseudomonas: intrageneric structure reconstructed from the nucleotide sequences of gyrB and rpoD genes. Microbiology 2000; 146:2385–2394
    [Google Scholar]
  15. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [CrossRef]
    [Google Scholar]
  16. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol 2016; 33:1870–1874 [CrossRef]
    [Google Scholar]
  17. Auch AF, von Jan M, Klenk H-P, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134 [CrossRef]
    [Google Scholar]
  18. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [CrossRef]
    [Google Scholar]
  19. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. Dna-Dna hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [CrossRef]
    [Google Scholar]
  20. Bernardet JF, Nakagawa Y, Holmes B. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52:1049–1070
    [Google Scholar]
  21. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp 607–654
    [Google Scholar]
  22. Dong XZ, Cai MY. Determination of Biochemical Characteristics. Manual for the Systematic Identification of General Bacteria Beijing: Science Press (In Chinese); 2001 pp 370–398
    [Google Scholar]
  23. Du Z-J, Wang Y, Dunlap C, Rooney AP, Chen G-J. Draconibacterium orientale gen. nov., sp. nov., isolated from two distinct marine environments, and proposal of Draconibacteriaceae fam. nov. Int J Syst Evol Microbiol 2014; 64:1690–1696 [CrossRef]
    [Google Scholar]
  24. CLSI Performance Standards for Antimicrobial Susceptibility Testing; 22nd Informational Supplement M100-S22 Wayne, PA: Clinical and Laboratory Standards Institute; 2012
    [Google Scholar]
  25. Collins MD, Goodfellow M, Minnikin DE. Fatty acid, isoprenoid quinone and polar lipid composition in the classification of Curtobacterium and related taxa. J Gen Microbiol 1980; 118:29–37 [CrossRef]
    [Google Scholar]
  26. Schleifer KH, Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 1972; 36:407–477 [CrossRef]
    [Google Scholar]
  27. Staneck JL, Roberts GD. Simplified Approach to Identification of Aerobic Actinomycetes by Thin-layer Chromatography. Appl Microbiol 1974; 28:226–231 [CrossRef]
    [Google Scholar]
  28. Xu X-W, Wu Y-H, Wang C-S, Oren A, Zhou P-J, Wu M et al. Haloferax larsenii sp. nov., an extremely halophilic archaeon from a solar saltern. Int J Syst Evol Microbiol 2007; 57:717–720 [CrossRef]
    [Google Scholar]
  29. Xin H, Itoh T, Zhou P, Suzuki K, Kamekura M et al. Natrinema versiforme sp. nov., an extremely halophilic archaeon from Aibi salt lake, Xinjiang, China. Int J Syst Evol Microbiol 2000; 50:1297–1303 [CrossRef]
    [Google Scholar]
  30. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [CrossRef]
    [Google Scholar]
  31. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI technical note 101.. MIDI Inc., Newark, DE; 1990
    [Google Scholar]
  32. Rodrigues DF, Goris J, Vishnivetskaya T, Gilichinsky D, Thomashow MF et al. Characterization of Exiguobacterium isolates from the Siberian permafrost. Description of Exiguobacterium sibiricum sp. nov. Extremophiles 2006; 10:285–294 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004048
Loading
/content/journal/ijsem/10.1099/ijsem.0.004048
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error