1887

Abstract

Two strains, WS 5063 and WS 5067, isolated from raw cow’s milk and skimmed milk concentrate, could be affiliated as members of the same, hitherto unknown, species by 16S rRNA and gene sequences. Multilocus sequence and average nucleotide identity (ANIm) analyses based on draft genome sequences confirmed the discovery of a novel species. It was most closely related to DSM 18928 with an ANIm of 91.4 %. The DNA G+C content of WS 5063 was 60.0 mol %. Phenotypic characterizations showed that the isolates are rod-shaped, motile, catalase- and oxidase-positive, and aerobic. Growth occurred at 4–34 °C and at pH values of pH 5.5–8.0. Both strains showed strong β-haemolysis on blood agar. The major cellular polar lipids were phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. The dominant quinone was Q-9 (90 %), but noticeable amounts of Q-8 (9 %) and traces of Q-7 were also detected. Fatty acid profiles were typical for species and exhibited C as a major component. Based on these results, we conclude that both strains belong to a novel species, for which the name sp. nov. is proposed. The type strain is WS 5063 (=DSM 108987=LMG 31232) and an additional strain is WS 5067 (=DSM 108988=LMG 31233).

Keyword(s): raw milk , Pseudomonas and peptidase
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004043
2020-02-11
2020-02-28
Loading full text...

Full text loading...

References

  1. Moore ERB, Tindall BJ, Martins Dos Santos VAP, Pieper DH, Ramos JL et al. Nonmedical: Pseudomonas, 3 ed. New York: Springer; 2006; pp646–703
    [Google Scholar]
  2. Gomila M, Peña A, Mulet M, Lalucat J, García-Valdés E. Phylogenomics and systematics in Pseudomonas. Front Microbiol 2015;6:214 [CrossRef]
    [Google Scholar]
  3. Parte AC. LPSN—list of prokaryotic names with standing in nomenclature. Nucleic Acids Res 2014;42:D613–D616 [CrossRef]
    [Google Scholar]
  4. Ballok AE, O'Toole GA. Pouring salt on a wound: Pseudomonas aeruginosa virulence factors alter Na+ and Cl- flux in the lung. J Bacteriol 2013;195:4013–4019 [CrossRef]
    [Google Scholar]
  5. Hantsis-Zacharov E, Halpern M. Culturable psychrotrophic bacterial communities in raw milk and their proteolytic and lipolytic traits. Appl Environ Microbiol 2007;73:7162–7168 [CrossRef]
    [Google Scholar]
  6. von Neubeck M, Baur C, Krewinkel M, Stoeckel M, Kranz B et al. Biodiversity of refrigerated raw milk microbiota and their enzymatic spoilage potential. Int J Food Microbiol 2015;211:57–65 [CrossRef]
    [Google Scholar]
  7. Marchand S, Heylen K, Messens W, Coudijzer K, De Vos P et al. Seasonal influence on heat-resistant proteolytic capacity of Pseudomonas lundensis and Pseudomonas fragi, predominant milk spoilers isolated from Belgian raw milk samples. Environ Microbiol 2009;11:467–482 [CrossRef]
    [Google Scholar]
  8. de Oliveira GB, Favarin L, Luchese RH, McIntosh D. Psychrotrophic bacteria in milk: how much do we really know?. Braz J Microbiol 2015;46:313–321 [CrossRef]
    [Google Scholar]
  9. Lafarge V, Ogier J-C, Girard V, Maladen V, Leveau J-Y et al. Raw cow milk bacterial population shifts attributable to refrigeration. Appl Environ Microbiol 2004;70:5644–5650 [CrossRef]
    [Google Scholar]
  10. Vithanage NR, Dissanayake M, Bolge G, Palombo EA, Yeager TR et al. Biodiversity of culturable psychrotrophic microbiota in RAW milk attributable to refrigeration conditions, seasonality and their spoilage potential. Int Dairy J 2016;57:80–90 [CrossRef]
    [Google Scholar]
  11. Sørhaug T, Stepaniak L. Psychrotrophs and their enzymes in milk and dairy products: quality aspects. Trends Food Sci Technol 1997;8:35–41 [CrossRef]
    [Google Scholar]
  12. Mulet M, Bennasar A, Lalucat J, García-Valdés E. An rpoD-based PCR procedure for the identification of Pseudomonas species and for their detection in environmental samples. Mol Cell Probes 2009;23:140–147 [CrossRef]
    [Google Scholar]
  13. Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ et al. Genbank. Nucleic Acids Res 2013;41:D36–D42 [CrossRef]
    [Google Scholar]
  14. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990;215:403–410 [CrossRef]
    [Google Scholar]
  15. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018;68:461–466 [CrossRef]
    [Google Scholar]
  16. Huptas C, Scherer S, Wenning M. Optimized illumina PCR-free library preparation for bacterial whole genome sequencing and analysis of factors influencing de novo assembly. BMC Res Notes 2016;9:269 [CrossRef]
    [Google Scholar]
  17. Patel RK, Jain M. NGS QC toolkit: a toolkit for quality control of next generation sequencing data. PLoS One 2012;7:e30619 [CrossRef]
    [Google Scholar]
  18. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012;19:455–477 [CrossRef]
    [Google Scholar]
  19. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015;25:1043–1055 [CrossRef]
    [Google Scholar]
  20. Chain PSG, Grafham DV, Fulton RS, Fitzgerald MG, Hostetler J et al. Genomics. genome Project standards in a new era of sequencing. Science 2009;326:236–237 [CrossRef]
    [Google Scholar]
  21. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014;30:2068–2069 [CrossRef]
    [Google Scholar]
  22. Kim O-S, Cho Y-J, Lee K, Yoon S-H, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62:716–721 [CrossRef]
    [Google Scholar]
  23. Edgar RC. Muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004;32:1792–1797 [CrossRef]
    [Google Scholar]
  24. Mulet M, Lalucat J, García-Valdés E. DNA sequence-based analysis of the Pseudomonas species. Environ Microbiol 2010;12:1513–1530 [CrossRef]
    [Google Scholar]
  25. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009;106:19126–19131 [CrossRef]
    [Google Scholar]
  26. Ehrenberg CG.Charakteristik von 274 neuen Arten von Infusorien Bericht bekannter Verhandlungen der Königlich-Preussischen Akademie der Wissenschaftlichen Berlin: 1840; pp197–219
    [Google Scholar]
  27. Holland DF.Generic index of the commoner forms of bacteria In Winslow CEA JB, Buchanan RE, Krumwiede C, Rogers LA. (editors) The families and genera of the bacteria Journal of Bacteriology; 1920; pp191–229
    [Google Scholar]
  28. Skerman VBD, Sneath PHA, McGOWAN V. Approved lists of bacterial names. Int J Syst Evol Microbiol 1980;30:225–420 [CrossRef]
    [Google Scholar]
  29. Dabboussi F, Hamze M, Elomari M, Verhille S, Baida N et al. Pseudomonas libanensis sp. nov., a new species isolated from Lebanese spring waters. Int J Syst Bacteriol 1999;49:1091–1101 [CrossRef]
    [Google Scholar]
  30. von Neubeck M, Huptas C, Glück C, Krewinkel M, Stoeckel M et al. Pseudomonas lactis sp. nov. and Pseudomonas paralactis sp. nov., isolated from bovine raw milk. Int J Syst Evol Microbiol 2017;67:1656–1664 [CrossRef]
    [Google Scholar]
  31. Tambong JT, Xu R, Bromfield ESP. Pseudomonas canadensis sp. nov., a biological control agent isolated from a field plot under long-term mineral fertilization. Int J Syst Evol Microbiol 2017;67:889–895 [CrossRef]
    [Google Scholar]
  32. Behrendt U, Ulrich A, Schumann P. Fluorescent pseudomonads associated with the phyllosphere of grasses; Pseudomonas trivialis sp. nov., Pseudomonas poae sp. nov. and Pseudomonas congelans sp. nov. Int J Syst Evol Microbiol 2003;53:1461–1469 [CrossRef]
    [Google Scholar]
  33. Migula W.Bacteriaceae (Stäbchenbacterien) In Engler A, Prantl K. (editors) Die Natürlichen Pflanzenfamilien Teil I: W. Engelmann; 1895; pp20–30
    [Google Scholar]
  34. Schroeter J, Cohn F.Über einige durch Bacterien gebildete Pigmente Beiträge zur Biologie der Pflanzen Breslau: Kern's Verlag; 1872; pp109–126
    [Google Scholar]
  35. Migula W. System der Bakterien Jena: Gustav Fischer; 1900
    [Google Scholar]
  36. Xu P, Li W-J, Tang S-K, Zhang Y-Q, Chen G-Z et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family 'Oxalobacteraceae' isolated from China. Int J Syst Evol Microbiol 2005;55:1149–1153 [CrossRef]
    [Google Scholar]
  37. Ryu E. A simple method of differentiation between gram-positive and gram-negative organisms without staining. Kitasato Arch Exp Med 1940;17:58–36
    [Google Scholar]
  38. King EO, Ward MK, Raney DE. Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med 1954;44:301–307
    [Google Scholar]
  39. Baur C, Krewinkel M, Kranz B, von Neubeck M, Wenning M et al. Quantification of the proteolytic and lipolytic activity of microorganisms isolated from raw milk. International Dairy Journal 2015;49:23–29 [CrossRef]
    [Google Scholar]
  40. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959;37:911–917 [CrossRef]
    [Google Scholar]
  41. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990;13:128–130 [CrossRef]
    [Google Scholar]
  42. Tindall BJ, Smibert RM, Krieg NR.Phenotypic characterization and the principles of comparative systematics In Reddy C, Beveridge T, Breznak JA, Marzluf G, Schmidt TM. (editors) Methods for General and Molecular Microbiology Washington, DC: American Society for Microbiology; 2007; pp330–393
    [Google Scholar]
  43. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990;66:199–202 [CrossRef]
    [Google Scholar]
  44. Miller LT. A single derivatization method for bacterial fatty acid methyl esters including hydroxy acids. J Clin Microbiol 1982;16:584–586
    [Google Scholar]
  45. Kuykendall LD, Roy MA, O'Neill JJ, Devine TE. Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 1988;38:358–361 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004043
Loading
/content/journal/ijsem/10.1099/ijsem.0.004043
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error