1887

Abstract

Four novel bacterial strains, designated Z294, Z311, Z443 and Z446, were isolated from the intestinal contents of plateau pika () on the Qinghai–Tibet Plateau of China. Cells were Gram-stain-positive, catalase-positive, oxidase-negative, aerobic, non-motile and short-rod shaped. Phylogenetic analyses based on 16S rRNA gene sequences indicated that the four isolates belong to the genus , but clearly separate from the currently recognized species. Both type strains (Z294 and Z443) shared low 16S rRNA gene sequence similarity, digital DNA–DNA hybridization relatedness and average nucleotide identity values with NBRC 107612, JCM 19765, JCM 15130 and DSM 21501 and against each other. The genomic DNA G+C contents of strains Z294 and Z443 were 73.3 and 70 %, respectively. The major cellular fatty acids of strain Z294 were -C, -C A and C, in contrast to -C and -C A for strain Z443. Both type strains (Z294 and Z443) shared the following common features: glucose, rhamnose and ribose as cell-wall sugars; MK-8(H) as major menaquinone; alanine, glutamic acid and lysine as cell-wall amino acids; and diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, phosphatidylinositol mannoside and one unidentified phosphoglycolipid as polar lipids. Comparing the phenotypic and phylogenetic features among the four strains and their related organisms, strains Z294 and Z443 represent two novel species within the genus , for which the names sp. nov. (type strain Z294=CGMCC 1.16428=DSM 106344) and sp. nov. (type strain Z443=CGMCC 1.16435=DSM 106174) are proposed.

Funding
This study was supported by the:
  • Jianguo Xu , Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences and Peking Union Medical College (CN) , (Award SZSM201811071)
  • Jianguo Xu , Research Units of Discovery of Unknown Bacteria and Function , (Award 2018RU010)
  • Jing Yang , National Science and Technology Major Project of China , (Award 2018ZX10712001-007, 2018ZX10305409-003)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004042
2020-03-20
2020-06-02
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/4/2318.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004042&mimeType=html&fmt=ahah

References

  1. Altenburger P, Kämpfer P, Schumann P, Vybiral D, Lubitz W et al. Georgenia muralis gen. nov., sp. nov., a novel actinobacterium isolated from a medieval wall painting. Int J Syst Evol Microbiol 2002; 52:875–881 [CrossRef]
    [Google Scholar]
  2. Woo S-G, Cui Y, Kang M-S, Jin L, Kim KK et al. Georgenia daeguensis sp. nov., isolated from 4-chlorophenol enrichment culture. Int J Syst Evol Microbiol 2012; 62:1703–1709 [CrossRef]
    [Google Scholar]
  3. Hozzein WN, Yang Z-W, Alharbi SA, Alsakkaf WAA, Asem MD et al. Georgenia deserti sp. nov., a halotolerant actinobacterium isolated from a desert sample. Int J Syst Evol Microbiol 2018; 68:1135–1139 [CrossRef]
    [Google Scholar]
  4. Tang S-K, Wang Y, Lee J-C, Lou K, Park D-J et al. Georgenia halophila sp. nov., a halophilic actinobacterium isolated from a salt lake. Int J Syst Evol Microbiol 2010; 60:1317–1421 [CrossRef]
    [Google Scholar]
  5. Li W-J, Xu P, Schumann P, Zhang Y-Q, Pukall R et al. Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia . Int J Syst Evol Microbiol 2007; 57:1424–1428 [CrossRef]
    [Google Scholar]
  6. Srinivas A, Rahul K, Sasikala C, Subhash Y, Ramaprasad EVV et al. Georgenia satyanarayanai sp. nov., an alkaliphilic and thermotolerant amylase-producing actinobacterium isolated from a soda lake. Int J Syst Evol Microbiol 2012; 62:2405–2409 [CrossRef]
    [Google Scholar]
  7. You Z-Q, Li J, Qin S, Tian X-P, Wang F-Z et al. Georgenia sediminis sp. nov., a moderately thermophilic actinobacterium isolated from sediment. Int J Syst Evol Microbiol 2013; 63:4243–4247 [CrossRef]
    [Google Scholar]
  8. Kämpfer P, Arun AB, Busse H-J, Langer S, Young C-C et al. Georgenia soli sp. nov., isolated from iron-ore-contaminated soil in India. Int J Syst Evol Microbiol 2010; 60:1027–1030 [CrossRef]
    [Google Scholar]
  9. Wang S, Xu X, Wang L, Jiao K, Zhang G. Georgenia subflava sp. nov., isolated from a deep-sea sediment. Int J Syst Evol Microbiol 2015; 65:4146–4150 [CrossRef]
    [Google Scholar]
  10. Hamada M, Tamura T, Ishida Y, Suzuki K-ichiro, Suzuki K. Georgenia thermotolerans sp. nov., an actinobacterium isolated from forest soil. Int J Syst Evol Microbiol 2009; 59:1875–1879 [CrossRef]
    [Google Scholar]
  11. Li L-Y, Yang Z-W, Asem MD, Salam N, Xiao M et al. Georgenia alba sp. nov., a novel halotolerant actinobacterium isolated from a desert sand sample. Antonie van Leeuwenhoek 2019; 112:203–209 [CrossRef][PubMed]
    [Google Scholar]
  12. Smith AT, Foggin JM, Marcfoggin J. The plateau pika (Ochotona curzoniae) is a keystone species for biodiversity on the Tibetan Plateau. Animal Conservation 1999; 2:235–240 [CrossRef]
    [Google Scholar]
  13. Meng X, Wang Y, Lu S, Lai X-H, Jin D et al. Actinomyces gaoshouyii sp. nov., isolated from plateau pika (Ochotona curzoniae). Int J Syst Evol Microbiol 2017; 67:3363–3368 [CrossRef]
    [Google Scholar]
  14. Zhang G, Yang J, Lai X-H, Lu S, Jin D et al. Neisseria chenwenguii sp. nov. isolated from the rectal contents of a plateau pika (Ochotona curzoniae). Antonie van Leeuwenhoek 2019; 112:1001–1010 [CrossRef][PubMed]
    [Google Scholar]
  15. Jin D, Chen C, Li L, Lu S, Li Z et al. Dynamics of fecal microbial communities in children with diarrhea of unknown etiology and genomic analysis of associated Streptococcus lutetiensis. BMC Microbiol 2013; 13:141 [CrossRef]
    [Google Scholar]
  16. Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 2014; 12:635–645 [CrossRef]
    [Google Scholar]
  17. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22:4673–4680 [CrossRef]
    [Google Scholar]
  18. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [CrossRef]
    [Google Scholar]
  19. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [CrossRef]
    [Google Scholar]
  20. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [CrossRef]
    [Google Scholar]
  21. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [CrossRef]
    [Google Scholar]
  22. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [CrossRef]
    [Google Scholar]
  23. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [CrossRef]
    [Google Scholar]
  24. Li D, Liu C-M, Luo R, Sadakane K, Lam T-W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 2015; 31:1674–1676 [CrossRef]
    [Google Scholar]
  25. Hyatt D, Chen G-L, Locascio PF, Land ML, Larimer FW et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 2010; 11:119 [CrossRef]
    [Google Scholar]
  26. Lowe TM, Chan PP. tRNAscan-SE on-line: integrating search and context for analysis of transfer RNA genes. Nucleic Acids Res 2016; 44:W54–W57 [CrossRef]
    [Google Scholar]
  27. Lagesen K, Hallin P, Rødland EA, Staerfeldt H-H, Rognes T et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007; 35:3100–3108 [CrossRef]
    [Google Scholar]
  28. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [CrossRef]
    [Google Scholar]
  29. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [CrossRef][PubMed]
    [Google Scholar]
  30. Price MN, Dehal PS, Arkin AP. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol 2009; 26:1641–1650 [CrossRef]
    [Google Scholar]
  31. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013; 30:772–780 [CrossRef]
    [Google Scholar]
  32. Kämpfer P, Kroppenstedt RM. Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 1996; 42:989–1005 [CrossRef]
    [Google Scholar]
  33. Lechevalier MP, Lechevalier HA. The chemotaxonomy of actinomycetes. In Dietz TDW. editor Actinomycete Taxonomy. Special Publication no. 6 Arlington, VA: Society for Industrial Microbiology; 1980 pp 227–291
    [Google Scholar]
  34. Collins MD, Jones D. Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2, 4-diaminobutyric acid. J Appl Bacteriol 1980; 48:459–470 [CrossRef]
    [Google Scholar]
  35. Minnikin DE, Collins MD, Goodfellow M. Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 1979; 47:87–95 [CrossRef]
    [Google Scholar]
  36. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria . J Gen Microbiol 1977; 100:221–230 [CrossRef]
    [Google Scholar]
  37. Schleifer KH, Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 1972; 36:407–477 [CrossRef]
    [Google Scholar]
  38. McKerrow J, Vagg S, McKinney T, Seviour EM, Maszenan AM et al. A simple HPLC method for analysing diaminopimelic acid diastereomers in cell walls of Gram-positive bacteria. Lett Appl Microbiol 2000; 30:178–182 [CrossRef]
    [Google Scholar]
  39. Póntigo F, Moraga M, Flores SV. Molecular phylogeny and a taxonomic proposal for the genus Streptococcus . Genet Mol Res 2015; 14:10905–10918 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004042
Loading
/content/journal/ijsem/10.1099/ijsem.0.004042
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error