1887

Abstract

A taxonomic study was carried out of strain K7, which was isolated from deep-sea water collected from the Indian Ocean. The bacterium was Gram-stain-negative, aerobic, oxidase-negative, catalase-positive, rod-shaped and non-motile. Growth was observed at salinities of 0.5–10 % (optimum, 3 %), at a pH range of pH 6.0–10.0 (optimum, pH 7.0) and at temperatures of 10–40 °C (optimum, 28 °C). Results of phylogenetic analysis based on 16S rRNA gene sequences indicated that strain K7 belonged to the family , with the high sequence similarities to the genera (92.2 %–94.4 %), (91.9 %–93.2 %), (92.1 %–92.6 %), (92.1 %–92.3 %), (91.9 %–92.1 %) and (91.8 %–92.1 %). The principal fatty acids were iso-C (28.4 %), iso-CG (14.2 %), summed feature 9 (iso-C ω and/or C 10-methyl; 11.6 %), iso-C 3-OH (10.0 %) and summed feature 3 (C 7 and/or C 6; 9.6 %). The G+C content of the chromosomal DNA was 35.8 mol%. The respiratory quinone was determined to be MK-6 (100 %). Phosphatidylethanolamine, two unidentified aminolipids, two unidentified phospholipid and four unidentified lipids were detected. The combined genotypic and phenotypic data show that strain K7 represents a novel species of a novel genus, for which the name gen. nov., sp. nov. is proposed, with the type strain K7 (=MCCC 1A01093=KCTC 52325).

Funding
This study was supported by the:
  • , National Infrastructure of Natural Resources for Science and Technology Program of China , (Award NIMR-2019-9)
  • Zongze Shao , Xiamen Ocean Economic Innovation and Development Demonstration Project , (Award 16PZP001SF16)
  • Zongze Shao , COMRA program , (Award No. DY135-B2-01)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004041
2020-02-17
2020-06-04
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/4/2325.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004041&mimeType=html&fmt=ahah

References

  1. Bernardet JF, Nakagawa Y, Holmes B. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52:1049
    [Google Scholar]
  2. Reichenbach H. The Order Cytophagales New York: Springer; 1992
    [Google Scholar]
  3. Bernardet JF, Segers P, Vancanneyt M, Berthe F, Kersters K et al. Cutting a Gordian knot: emended classification and description of the genus, emended description of the family, and proposal of nom. nov. Basonym, Strohl and Tait 1978 1996
    [Google Scholar]
  4. Lee H-S, Kwon KK, Yang S-H, Bae SS, Park CH et al. Description of Croceitalea gen. nov. in the family Flavobacteriaceae with two species, Croceitalea eckloniae sp. nov. and Croceitalea dokdonensis sp. nov., isolated from the rhizosphere of the marine alga Ecklonia kurome. Int J Syst Evol Microbiol 2008; 58:2505–2510 [CrossRef]
    [Google Scholar]
  5. Zhang C, Wu J, Neuner K, Yao J, Margesin R. Algibacter amylolyticus sp. nov. isolated from Sakhalin Island, Russia. Int J Syst Evol Microbiol 2015; 65:1556–1560
    [Google Scholar]
  6. Yoon J, Adachi K, Kasai H. Citreitalea marina gen. nov., sp. nov., a novel member of the family Flavobacteriaceae isolated from a marine red alga and emended description of the genus Gangjinia . Antonie van Leeuwenhoek 2014; 106:261–269 [CrossRef]
    [Google Scholar]
  7. Hu D, Wang L, Chen Y, Li X, Du Y et al. Croceivirga radicis gen. nov., sp. nov., isolated from a rotten tropical mangrove root. Int J Syst Evol Microbiol 2017; 67:3733–3738 [CrossRef]
    [Google Scholar]
  8. Fagervold SK, Intertaglia L, Batailler N, Bondoso J, Lebaron P. Saonia flava gen. nov., sp. nov., a marine bacterium of the family Flavobacteriaceae isolated from coastal seawater. Int J Syst Evol Microbiol 2017; 67:3246–3250 [CrossRef]
    [Google Scholar]
  9. Zhong ZP, Liu Y, Wang F, Zhou YG, Liu HC et al. Planktosalinus lacus gen. nov., sp. nov., a member of the family Flavobacteriaceae isolated from a salt lake. Int J Syst Evol Microbiol 2016; 66:2084–2089 [CrossRef]
    [Google Scholar]
  10. Yoon J, Oku N, Kasai H. Ascidiimonas aurantiaca gen. nov., sp. nov., a member of Flavobacteriaceae isolated from a sea squirt. Antonie van Leeuwenhoek 2016; 109:501–508 [CrossRef]
    [Google Scholar]
  11. Nguyen TM, Kim J. Flavobacterium fulvum sp. nov., Flavobacterium pedocola sp. nov. and Flavobacterium humicola sp. nov., three new members of the family Flavobacteriaceae, isolated from soil. Int J Syst Evol Microbiol 2016; 66:3108–3118 [CrossRef]
    [Google Scholar]
  12. Chen C, Su Y, Tao T, Fu G, Zhang C et al. Maripseudobacter aurantiacus gen. nov., sp. nov., a novel member of the family Flavobacteriaceae isolated from a sedimentation Basin. Int J Syst Evol Microbiol 2017; 67:778–783 [CrossRef]
    [Google Scholar]
  13. Shao R, Lai Q, Liu X, Sun F, Du Y et al. Zunongwangia atlantica sp. nov., isolated from deep-sea water. Int J Syst Evol Microbiol 2014; 64:16–20 [CrossRef]
    [Google Scholar]
  14. Zhang H, Chang YQ, Zheng WS, Chen GJ, Du ZJ. Salinimicrobium flavum sp. nov., isolated from coastal sediment. Int J Syst Evol Microbiol 2017; 67:4083–4088 [CrossRef]
    [Google Scholar]
  15. Siamphan C, Kim W. Salegentibacter chungangensis sp. nov., isolated from a sea sand and emended description of the genus Salegentibacter . Int J Syst Evol Microbiol 2014; 64:1514–1519 [CrossRef]
    [Google Scholar]
  16. Sung HR, Joh K, Shin KS. Mesonia maritima sp. nov., isolated from seawater of the South Sea of Korea. Int J Syst Evol Microbiol 2017; 67:2574–2580 [CrossRef]
    [Google Scholar]
  17. Liu Q, Li J, Wei B, Zhang X, Zhang L et al. Leeuwenhoekiella nanhaiensis sp. nov., isolated from the deep-sea water of the South China Sea. Int J Syst Evol Microbiol 2016; 66:1352–1357
    [Google Scholar]
  18. AZ L, Han XB, Lin LZ, Zhang MX, Zhu HH. Gramella antarctica sp. nov., isolated from marine surface sediment. Int J Syst Evol Microbiol 2017; 68:358–363
    [Google Scholar]
  19. Nedashkovskaya OI et al. Mesonia algae gen. nov., sp. nov., a novel marine bacterium of the family Flavobacteriaceae isolated from the green alga Acrosiphonia sonderi (Kutz) Kornm. Int J Syst Evol Microbiol 2003; 53:1967–1971 [CrossRef]
    [Google Scholar]
  20. Lee S-Y, Lee M-H, Yoon J-H. Mesonia ostreae sp. nov., isolated from seawater of an oyster farm, and emended description of the genus Mesonia . Int J Syst Evol Microbiol 2012; 62:1804–1808 [CrossRef]
    [Google Scholar]
  21. Choi A, Baek K, Lee H, Cho J-C. Mesonia aquimarina sp. nov., a marine bacterium isolated from coastal seawater. Int J Syst Evol Microbiol 2015; 65:135–140 [CrossRef]
    [Google Scholar]
  22. Kolberg J, Wilke T, Glaeser SP, Schubert P, Busse H-J et al. Mesonia hippocampi sp. nov., isolated from the brood pouch of a diseased Barbour's Seahorse (Hippocampus barbouri). Int J Syst Evol Microbiol 2015; 65:2241–2247 [CrossRef]
    [Google Scholar]
  23. Nedashkovskaya OI et al. Mesonia mobilis sp. nov., isolated from seawater, and emended description of the genus Mesonia . Int J Syst Evol Microbiol 2006; 56:2433–2436 [CrossRef]
    [Google Scholar]
  24. Kang HS, Lee SD. Mesonia phycicola sp. nov., isolated from seaweed, and emended description of the genus Mesonia . Int J Syst Evol Microbiol 2010; 60:591–594 [CrossRef]
    [Google Scholar]
  25. Wang FQ, Xie ZH, Zhao JX, Chen GJ, Du ZJ. Mesonia sediminis sp. nov., isolated from a sea cucumber culture pond. Antonie van Leeuwenhoek 2015; 108:1205–1212 [CrossRef]
    [Google Scholar]
  26. Lai Q, Yuan J, Gu L, Shao Z. Marispirillum indicum gen. nov., sp. nov., isolated from a deep-sea environment. Int J Syst Evol Microbiol 2009; 59:1278–1281 [CrossRef]
    [Google Scholar]
  27. Ausubel F, Brent R, Kingston R, Moore D, Seidman J et al. Short Protocols in Molecular Biology: a Compendium of Methods from Current Protocols in Molecular Biology, 3rd edn. New York: Wiley; 1995
    [Google Scholar]
  28. Liu C, Shao Z. Alcanivorax dieselolei sp. nov., a novel alkane-degrading bacterium isolated from sea water and deep-sea sediment. Int J Syst Evol Microbiol 2005; 55:1181–1186 [CrossRef]
    [Google Scholar]
  29. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [CrossRef]
    [Google Scholar]
  30. Chun J, Kim BK, Lim Y-W, Kim M, Kim S et al. Eztaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 2007; 57:2259–2261 [CrossRef]
    [Google Scholar]
  31. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 1870; 2016:33
    [Google Scholar]
  32. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425
    [Google Scholar]
  33. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [CrossRef]
    [Google Scholar]
  34. Rzhetsky A, Nei M. Statistical properties of the ordinary least-squares, generalized least-squares, and minimum-evolution methods of phylogenetic inference. J Mol Evol 1992; 35:367–375 [CrossRef]
    [Google Scholar]
  35. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [CrossRef]
    [Google Scholar]
  36. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [CrossRef]
    [Google Scholar]
  37. Lagesen K, Hallin P, Rødland EA, Stærfeldt H-H, Rognes T et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007; 35:3100–3108 [CrossRef]
    [Google Scholar]
  38. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [CrossRef]
    [Google Scholar]
  39. SI N, Kim YO, Yoon SH, SM H, Baek I et al. UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:1–6
    [Google Scholar]
  40. Skerman VBD. A Guide to the Identification of the Genera of Bacteria, 2nd edn. Baltimore: Williams & Wilkins; 1967
    [Google Scholar]
  41. Dong XZ, Cai MY. Determinative Manual for Routine Bacteriology Beijing: Scientific Press (English translation); 2001
    [Google Scholar]
  42. Sambrook J, Fritsch EF, Maniatis T. Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory; 1989
    [Google Scholar]
  43. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI; 1990
    [Google Scholar]
  44. Tindall BJ. A Comparative Study of the Lipid Composition of Halobacterium saccharovorum from Various Sources. Syst Appl Microbiol 1990; 13:128–130 [CrossRef]
    [Google Scholar]
  45. Tindall BJ. Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 1990; 66:199–202 [CrossRef]
    [Google Scholar]
  46. Kates M. Lipid extraction procedures. Techniques of lipidology Elsevier, Amsterdam 1986100–111
    [Google Scholar]
  47. Nedashkovskaya OI, Vancanneyt M, Dawyndt P, Engelbeen K. Reclassification of [Cytophaga] marinoflava Reichenbach 1989 as Leeuwenhoekiella marinoflava gen. nov., comb. nov. and description of Leeuwenhoekiella aequorea sp. nov . Int J Syst Evol Microbiol 2005; 55:1033–1038 [CrossRef]
    [Google Scholar]
  48. Lee SY, Park S, Oh TK, Yoon JH. Salinimicrobium gaetbulicola sp. nov., isolated from tidal flat sediment. Int J Syst Evol Microbiol 2012; 62:1027–1031 [CrossRef]
    [Google Scholar]
  49. Nedashkovskaya OI et al. Salegentibacter holothuriorum sp. nov., isolated from the edible holothurian Apostichopus japonicus. Int J Syst Evol Microbiol 2004; 54:1107–1110 [CrossRef]
    [Google Scholar]
  50. Rameshkumar N, Krishnan R, Lang E, Matsumura Y, Sawabe T et al. Zunongwangia mangrovi sp. nov., isolated from mangrove (Avicennia marina) rhizosphere, and emended description of the genus Zunongwangia . Int J Syst Evol Microbiol 2014; 64:545–550 [CrossRef]
    [Google Scholar]
  51. Panschin I, Becher M, Verbarg S, Spröer C, Rohde M et al. Description of Gramella forsetii sp. nov., a marine Flavobacteriaceae isolated from North sea water, and emended description of Gramella gaetbulicola CHO et al. 2011. Int J Syst Evol Microbiol 2017; 67:697–703 [CrossRef]
    [Google Scholar]
  52. Lim JM, Jeon CO, Lee SS, Park DJ, Xu LH et al. Reclassification of Salegentibacter catena Ying et al. 2007 as Salinimicrobium catena gen. nov., comb. nov. and description of Salinimicrobium xinjiangense sp. nov., a halophilic bacterium isolated from Xinjiang province in China. Int J Syst Evol Microbiol 2008; 58:438–442 [CrossRef]
    [Google Scholar]
  53. Nedashkovskaya OI, Vancanneyt M, Kim SB, Han J, Zhukova NV et al. Salinimicrobium marinum sp. nov., a halophilic bacterium of the family Flavobacteriaceae, and emended descriptions of the genus Salinimicrobium and Salinimicrobium catena. Int J Syst Evol Microbiol 2010; 60:2303–2306 [CrossRef]
    [Google Scholar]
  54. Subhash Y, Sasikala C, Ramana CV, Ch R V. Salinimicrobium sediminis sp. nov., isolated from a deep-sea sediment. Int J Syst Evol Microbiol 2014; 64:984–988 [CrossRef]
    [Google Scholar]
  55. Kim JH, Yoon JH, Kim W. Salinimicrobium soli sp. nov., isolated from soil of reclaimed land. Int J Syst Evol Microbiol 2016; 66:462–467 [CrossRef]
    [Google Scholar]
  56. Chen YG, Cui XL, Zhang YQ, Li WJ, Wang YX et al. Salinimicrobium terrae sp. nov., isolated from saline soil, and emended description of the genus Salinimicrobium . Int J Syst Evol Microbiol 2008; 58:2501–2504 [CrossRef]
    [Google Scholar]
  57. Nedashkovskaya OI et al. Salegentibacter mishustinae sp. nov., isolated from the sea urchin Strongylocentrotus intermedius. Int J Syst Evol Microbiol 2005; 55:235–238 [CrossRef]
    [Google Scholar]
  58. Nedashkovskaya OI et al. Salegentibacter agarivorans sp. nov., a novel marine bacterium of the family Flavobacteriaceae isolated from the sponge Artemisina sp. Int J Syst Evol Microbiol 2006; 56:883–887 [CrossRef]
    [Google Scholar]
  59. Xia HF, Li XL, Liu QQ, Miao TT, Du ZJ et al. Salegentibacter echinorum sp. nov., isolated from the sea urchin Hemicentrotus pulcherrimus. Antonie van Leeuwenhoek 2013; 104:315–320 [CrossRef]
    [Google Scholar]
  60. Ivanova EP et al. Salegentibacter flavus sp. nov. Int J Syst Evol Microbiol 2006; 56:583–586 [CrossRef]
    [Google Scholar]
  61. Yoon JH, Lee MH, Kang SJ, Oh TK. Salegentibacter salinarum sp. nov., isolated from a marine solar saltern. Int J Syst Evol Microbiol 2008; 58:365–369 [CrossRef]
    [Google Scholar]
  62. Yoon JH, Jung SY, Kang SJ, Jung YT, Oh TK. Salegentibacter salarius sp. nov., isolated from a marine solar saltern. Int J Syst Evol Microbiol 2007; 57:2738–2742 [CrossRef]
    [Google Scholar]
  63. McCammon SA, Bowman JP. Taxonomy of Antarctic Flavobacterium species: description of Flavobacterium gillisiae sp. nov., Flavobacterium tegetincola sp. nov., and Flavobacterium xanthum sp. nov., nom. rev. and reclassification of [Flavobacterium] salegens as Salegentibacter salegens gen. nov., comb. nov. Int J Syst Evol Microbiol 2000; 50:1055–1063 [CrossRef]
    [Google Scholar]
  64. Liang QY, Xu ZX, Zhang J, Chen GJ, Du ZJ. Salegentibacter sediminis sp. nov., a marine bacterium of the family Flavobacteriaceae isolated from coastal sediment. Int J Syst Evol Microbiol 2018; 68:2375–2380 [CrossRef]
    [Google Scholar]
  65. Fidalgo C, Martins R, Proença DN, Morais PV, Alves A et al. Zunongwangia endophytica sp. nov., an endophyte isolated from the salt marsh plant, Halimione portulacoides, and emended description of the genus Zunongwangia . Int J Syst Evol Microbiol 2017; 67:3004–3009 [CrossRef]
    [Google Scholar]
  66. Qin QL, Zhao DL, Wang J, Chen XL, Dang HY et al. Wangia profunda gen. nov., sp. nov., a novel marine bacterium of the family Flavobacteriaceae isolated from southern Okinawa Trough deep-sea sediment. FEMS Microbiol Lett 2007; 271:53–58 [CrossRef]
    [Google Scholar]
  67. Nedashkovskaya OI, Vancanneyt M, Kim SB, Zhukova NV, Han JH et al. Leeuwenhoekiella palythoae sp. nov., a new member of the family Flavobacteriaceae . Int J Syst Evol Microbiol 2009; 59:3074–3077 [CrossRef]
    [Google Scholar]
  68. Pinhassi J et al. Leeuwenhoekiella blandensis sp. nov., a genome-sequenced marine member of the family Flavobacteriaceae . Int J Syst Evol Microbiol 2006; 56:1489–1493 [CrossRef]
    [Google Scholar]
  69. OJ S, Kim SJ, Jung MY, Choi SB, Kim JG et al. Leeuwenhoekiella polynyae sp. nov., isolated from a polynya in western Antarctica. Int J Syst Evol Microbiol 2015; 65:1694–1699
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004041
Loading
/content/journal/ijsem/10.1099/ijsem.0.004041
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error