gen. nov. and sp. nov., a cryophilic yeast from ancient permafrost and melted sea ice Free

Abstract

A cryophilic basidiomycetous yeast unable to grow at 18 °C or higher temperatures was isolated from a subsurface permafrost layer collected in the Eastern Swiss Alps and from melted sea ice collected in the Artic at Frobisher Bay, Nunavut, Canada. Phylogenetic analyses employing combined sequences of the D1/D2 domain and ITS region indicated that the two new isolates belong to the family of the class but are distantly related to any of the currently recognized species and genera. Consequently, the novel genus , and the novel species (type strain PYCC 8347=CBS 16055) are proposed to accommodate this cryophilic yeast. Although sparse hyphae and teliospore-like stuctures were observed upon prolonged incubation, a sexual cycle was not observed and therefore is documented solely from its asexual stage.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004040
2020-02-05
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/4/2334.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004040&mimeType=html&fmt=ahah

References

  1. Raspor P, Zupan J. Yeasts in extreme environments. In Rosa CA, Péter G. (editors) Biodiversity and Ecophysiology of Yeasts Berlin/Heidelberg: Springer-Verlag; 2006 pp 371–417
    [Google Scholar]
  2. Yurkov AM, Sannino C, Turchetti B. Mrakia fibulata sp. nov., a psychrotolerant yeast from temperate and cold habitats. Antonie van Leeuwenhoek 2020in press
    [Google Scholar]
  3. Buzzini P, Turk M, Perini L, Turchetti B, Gunde-Cimerman N. Yeasts in polar and subpolar habitats. Yeasts in Natural Ecosystems: Diversity Springer International Publishing; 2017 pp 331–365
    [Google Scholar]
  4. Sannino C, Tasselli G, Filippucci S, Turchetti B, Buzzini P. Yeasts in non polar cold habitats. Yeasts in Natural Ecosystems: Diversity Cham: Springer International Publishing; 2017 pp 367–396
    [Google Scholar]
  5. Zalar P, Gunde-Cimerman N. Cold-adapted yeasts in arctic habitats. In Buzzini P, Margesin R. (editors) Cold-Adapted Yeasts Berlin, Heidelberg: Springer Berlin Heidelberg; 2014 pp 49–74
    [Google Scholar]
  6. Thomas A. Microorganisms in Sea Ice Melt Pools as a Source of Ultra-Violet Radiation Absorbing Metabolites University of Prince Edward Island; 2016
    [Google Scholar]
  7. Pontes A, Röhl O, Carvalho C, Maldonado C, Yurkov AM et al. Cystofilobasidium intermedium sp. nov. and Cystofilobasidium alribaticum f.a. sp. nov., isolated from Mediterranean forest soils. Int J Syst Evol Microbiol 2016; 66:1058–1062 [View Article]
    [Google Scholar]
  8. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article]
    [Google Scholar]
  9. Kurtzman CP, Fell JW, Boekhout T, Robert V. Methods for isolation, phenotypic characterization and maintenance of yeasts. The Yeasts, A Taxonomic Study Amsterdam: Elsevier; 2011 pp 87–110
    [Google Scholar]
  10. Frey B, Rime T, Phillips M, Stierli B, Hajdas I et al. Microbial diversity in European alpine permafrost and active layers. FEMS Microbiol Ecol 2016; 92:fiw018 [View Article]
    [Google Scholar]
  11. Marvanová L, Suberkropp K. Camptobasidium hydrophilum and Its anamorph, Crucella subtilis : a new heterobasidiomycete from streams. Mycologia 1990; 82:208–217 [View Article]
    [Google Scholar]
  12. Turchetti B, Thomas Hall SR, Connell LB, Branda E, Buzzini P et al. Psychrophilic yeasts from Antarctica and European glaciers: description of Glaciozyma gen. nov., Glaciozyma martinii sp. nov. and Glaciozyma watsonii sp. nov. Extremophiles 2011; 15:573–586 [View Article]
    [Google Scholar]
  13. Margesin R, Miteva V. Diversity and ecology of psychrophilic microorganisms. Res Microbiol 2011; 162:346–361 [View Article]
    [Google Scholar]
  14. Zucconi L, Selbmann L, Buzzini P, Turchetti B, Guglielmin M et al. Searching for eukaryotic life preserved in Antarctic permafrost. Polar Biol 2012; 35:749–757 [View Article]
    [Google Scholar]
  15. Hansen AA, Herbert RA, Mikkelsen K, Jensen LL, Kristoffersen T et al. Viability, diversity and composition of the bacterial community in a high Arctic permafrost soil from Spitsbergen, Northern Norway. Environ Microbiol 2007; 9:2870–2884 [View Article]
    [Google Scholar]
  16. Bai Y, Yang D, Wang J, Xu S, Wang X et al. Phylogenetic diversity of culturable bacteria from alpine permafrost in the Tianshan Mountains, northwestern China. Res Microbiol 2006; 157:741–751 [View Article]
    [Google Scholar]
  17. Zhang G, Niu F, Ma X, Liu W, Dong M et al. Phylogenetic diversity of bacteria isolates from the Qinghai-Tibet Plateau permafrost region. Can J Microbiol 2007; 53:1000–1010 [View Article]
    [Google Scholar]
  18. Hu W, Zhang Q, Tian T, Cheng G, An L et al. The microbial diversity, distribution, and ecology of permafrost in China: a review. Extremophiles 2015; 19:693–705 [View Article]
    [Google Scholar]
  19. Boetius A, Anesio AM, Deming JW, Mikucki JA, Rapp JZ. Microbial ecology of the cryosphere: sea ice and glacial habitats. Nat Rev Microbiol 2015; 13:677–690 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004040
Loading
/content/journal/ijsem/10.1099/ijsem.0.004040
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed