1887

Abstract

This study presents taxonomic description of strains LB-D12, AT-3-2, AT-3–7, and TSA-D2 isolated from Arctic soil. All strains were psychrophilic, Gram-stain-negative, aerobic, non-motile, and rod-shaped. Phylogenetic analysis showed that these strains belonged to the genus . Strains LB-D12, AT-3-2 and AT-3–7 were closest to LMG 22018 (98.5–98.8% sequence similarity). Strain TSA-D2 was closest to DSM 15718 (98.3 % sequence similarity). These strains shared common chemotaxonomic features comprising MK-6 as a sole quinone, phosphatidylethanolamine as the principal polar lipid, and summed feature 3 (iso-C 2-OH and/or Cω7), iso-C 3-OH, Cω6, iso-C, and anteiso-C as the main fatty acids. The ANI and dDDH values between these novel isolates and their closest relatives were below the cut-off values of 95 and 70 %, respectively used for species demarcation. The DNA G+C content of all strains ranged from 34.2 to 34.6 mol%. The obtained polyphasic taxonomic data suggested that the isolated strains represent novel species within the genus , for which the names sp. nov. (type strain LB-D12=KEMB 9005-737=KACC 21180=NBRC 113784), sp. nov. (type strain AT-3–2=KEMB 9005-738=KACC 21176=NBRC 113785), and sp. nov. (type strain TSA-D2=KEMB 9005-741=KACC 21179=NBRC 113788) are proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004031
2020-02-10
2020-02-28
Loading full text...

Full text loading...

References

  1. Bergey DH, Harrison FC, Breed RS, Hammer BW, Huntoon FM.Genus II. Flavobacterium gen. nov In: Bergey’s Manual of Determinative Bacteriology Baltimore: Williams & Wilkins; 1923; pp97–117
    [Google Scholar]
  2. Bernardet J-F, Segers P, Vancanneyt M, Berthe F, Kersters K et al. Cutting a Gordian knot: emended classification and description of the genus Flavobacterium, emended description of the family Flavobacteriaceae, and proposal of Flavobacterium hydatis nom. nov. (basonym, Cytophaga aquatilis STROHL and Tait 1978). Int J Syst Bacteriol 1996;46:128–148 [CrossRef]
    [Google Scholar]
  3. Bernardet J-F, Bowman JP.The genus Flavobacterium In White WB, Parte AC. (editors) Bergey’s Manual of Systematic Bacteriology Springer, New York, Dordrecht, Heidelberg, London; 2010; pp112–155
    [Google Scholar]
  4. Kuo I, Saw J, Kapan DD, Christensen S, Kaneshiro KY et al. Flavobacterium akiainvivens sp. nov., from decaying wood of Wikstroemia oahuensis, Hawai'i, and emended description of the genus Flavobacterium. Int J Syst Evol Microbiol 2013;63:3280–3286 [CrossRef]
    [Google Scholar]
  5. Králová S, Busse H-J, Švec P, Mašlaňová I, Staňková E et al. Flavobacterium circumlabens sp. nov. and Flavobacterium cupreum sp. nov., two psychrotrophic species isolated from Antarctic environmental samples. Syst Appl Microbiol 2019;42:291–301 [CrossRef]
    [Google Scholar]
  6. Van Trappen S, Vandecandelaere I, Mergaert J, Swings J. Flavobacterium fryxellicola sp. nov. and Flavobacterium psychrolimnae sp. nov., novel psychrophilic bacteria isolated from microbial mats in Antarctic lakes. Int J Syst Evol Microbiol 2005;55:769–772 [CrossRef]
    [Google Scholar]
  7. Xu M, Xin Y, Tian J, Dong K, Yu Y et al. Flavobacterium sinopsychrotolerans sp. nov., isolated from a glacier. Int J Syst Evol Microbiol 2011;61:20–24 [CrossRef]
    [Google Scholar]
  8. Zhu F, Wang S, Zhou P. Flavobacterium xinjiangense sp. nov. and Flavobacterium omnivorum sp. nov., novel psychrophiles from the China No. 1 glacier. Int J Syst Evol Microbiol 2003;53:853–857 [CrossRef]
    [Google Scholar]
  9. Tamaki H et al. Flavobacterium limicola sp. nov., a psychrophilic, organic-polymer-degrading bacterium isolated from freshwater sediments. Int J Syst Evol Microbiol 2003;53:519–526 [CrossRef]
    [Google Scholar]
  10. Zamora L, Vela AI, Sanchez-Porro C, Palacios MA, Moore ERB et al. Flavobacterium tructae sp. nov. and Flavobacterium piscis sp. nov., isolated from farmed rainbow trout (Oncorhynchus mykiss). Int J Syst Evol Microbiol 2014;64:392–399 [CrossRef]
    [Google Scholar]
  11. Van Trappen S, Vandecandelaere I, Mergaert J, Swings J, sp F. Flavobacterium degerlachei sp. nov., Flavobacterium frigoris sp. nov. and Flavobacterium micromati sp. nov., novel psychrophilic bacteria isolated from microbial mats in Antarctic lakes. Int J Syst Evol Microbiol 2004;54:85–92 [CrossRef]
    [Google Scholar]
  12. McCammon SA, Bowman JP. Taxonomy of Antarctic Flavobacterium species: description of Flavobacterium gillisiae sp. nov., Flavobacterium tegetincola sp. nov. and Flavobacterium xanthum sp. nov., nom. rev. and reclassification of [Flavobacterium] salegens as Salegentibacter salegens gen. nov., comb. nov. Int J Syst Evol Microbiol 2000;50:1055–1063 [CrossRef]
    [Google Scholar]
  13. Dong K, Liu H, Zhang J, Zhou Y, Xin Y. Flavobacterium xueshanense sp. nov. and Flavobacterium urumqiense sp. nov., two psychrophilic bacteria isolated from glacier ice. Int J Syst Evol Microbiol 2012;62:1151–1157 [CrossRef]
    [Google Scholar]
  14. Frank JA, Reich CI, Sharma S, Weisbaum JS, Wilson BA et al. Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl Environ Microbiol 2008;74:2461–2470 [CrossRef]
    [Google Scholar]
  15. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef]
    [Google Scholar]
  16. Pruesse E, Peplies J, Glöckner FO. Sina: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012;28:1823–1829 [CrossRef]
    [Google Scholar]
  17. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef]
    [Google Scholar]
  18. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef]
    [Google Scholar]
  19. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef]
    [Google Scholar]
  20. Kim I, Kim D-U, Kim N-H, Ka J-O. Isolation and characterization of fenobucarb-degrading bacteria from rice paddy soils. Biodegradation 2014;25:383–394 [CrossRef]
    [Google Scholar]
  21. Pavel AB, Vasile CI. PyElph - a software tool for gel images analysis and phylogenetics. BMC Bioinformatics 2012;13:9 [CrossRef]
    [Google Scholar]
  22. Stackebrandt E, Ebers J. Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 2006;33:152–155
    [Google Scholar]
  23. Kim M, Oh H-S, Park S-C, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014;64:346–351 [CrossRef]
    [Google Scholar]
  24. Coil D, Jospin G, Darling AE. A5-miseq: an updated pipeline to assemble microbial genomes from illumina MiSeq data. Bioinformatics 2015;31:587–589 [CrossRef]
    [Google Scholar]
  25. Zhang Z, Schwartz S, Wagner L, Miller W. A greedy algorithm for aligning DNA sequences. Journal of Computational Biology 2000;7:203–214 [CrossRef]
    [Google Scholar]
  26. Lee I, Chalita M, Ha S-M, Na S-I, Yoon S-H et al. ContEst16S: an algorithm that identifies contaminated prokaryotic genomes using 16S RNA gene sequences. Int J Syst Evol Microbiol 2017;67:2053–2057 [CrossRef]
    [Google Scholar]
  27. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. Ncbi prokaryotic genome annotation pipeline. Nucleic Acids Res 2016;44:6614–6624 [CrossRef]
    [Google Scholar]
  28. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008;9:75 [CrossRef]
    [Google Scholar]
  29. Blin K, Shaw S, Steinke K, Villebro R, Ziemert N et al. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 2019;47:W81–W87 [CrossRef]
    [Google Scholar]
  30. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019;10:2182 [CrossRef]
    [Google Scholar]
  31. Lefort V, Desper R, Gascuel O. FastME 2.0: a comprehensive, accurate, and fast Distance-Based phylogeny inference program: table 1. Mol Biol Evol 2015;32:2798–2800 [CrossRef]
    [Google Scholar]
  32. Gonzalez JM, Saiz-Jimenez C. A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol 2002;4:770–773 [CrossRef]
    [Google Scholar]
  33. Yoon S-H, Ha S-min, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017;110:1281–1286 [CrossRef]
    [Google Scholar]
  34. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14:60 [CrossRef]
    [Google Scholar]
  35. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989;39:224–229 [CrossRef]
    [Google Scholar]
  36. Goordial J, Raymond-Bouchard I, Zolotarov Y, de Bethencourt L, Ronholm J et al. Cold adaptive traits revealed by comparative genomic analysis of the eurypsychrophile Rhodococcus sp. JG3 isolated from high elevation McMurdo Dry Valley permafrost, Antarctica. FEMS Microbiol Ecol 2015;92:fiv154
    [Google Scholar]
  37. Moreno-Vivián C, Cabello Purificación, Martínez-Luque M, Blasco R, Castillo F. Prokaryotic nitrate reduction: molecular properties and functional distinction among bacterial nitrate reductases. J Bacteriol 1999;181:6573–6584 [CrossRef]
    [Google Scholar]
  38. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009;106:19126–19131 [CrossRef]
    [Google Scholar]
  39. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc Committee on reconciliation of approaches to bacterial Systematics. Int J Syst Evol Microbiol 1987;37:463–464 [CrossRef]
    [Google Scholar]
  40. Doetsch RN et al.Determinative methods of light microscopy In Gerhardt P, Murray RGE, Costilow RN, Nester EW, Wood WA et al. (editors) Manual of Methods for General Bacteriology Washington, DC, USA: American Society for Microbiology; 1981; pp21–33
    [Google Scholar]
  41. Bernardet J-F, Nakagawa Y, Holmes B. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002;52:1049–1070
    [Google Scholar]
  42. Breznak JA, Costilow RN et al.Physicochemical factors in growth In Reddy CA, Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM et al. (editors) Methods for General and Molecular Bacteriology Washinton, DC, USA: American Society of Microbiology; 2007; pp309–329
    [Google Scholar]
  43. Chaudhary DK, Kim J. Flavobacterium olei sp. nov., a novel psychrotolerant bacterium isolated from oil-contaminated soil. Int J Syst Evol Microbiol 2017;67:2211–2218 [CrossRef]
    [Google Scholar]
  44. Smibert RM, Krieg NR.Phenotypic characterization In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp607–654
    [Google Scholar]
  45. Reichenbach H.The order Cytophagales In Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH. (editors) The Prokaryotes Springer New York: 1992; pp3631–3675
    [Google Scholar]
  46. Naziri D, Hamidi M, Hassanzadeh S, Tarhriz V, Zanjani BM et al. Analysis of carotenoid production by Halorubrum sp. TBZ126; an extremely halophilic archeon from Urmia Lake. Adv Pharm Bull 2014;4:61–67
    [Google Scholar]
  47. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  48. Collins MD, Jones D. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev 1981;45:316–354 [CrossRef]
    [Google Scholar]
  49. Komagata K, Suzuki KI. 4 lipid and cell-wall analysis in bacterial Systematics. Methods Microbiol 1988;19:161–207
    [Google Scholar]
  50. Sasser M.Identification of bacteria by gas chromatography of cellular fatty acids MIDI Tech Note 101Newark, MIDI Inc;
  51. Montero-Calasanz MdelC, Göker M, Rohde M, Spröer C, Schumann P et al. Chryseobacterium oleae sp. nov., an efficient plant growth promoting bacterium in the rooting induction of olive tree (Olea europaea L.) cuttings and emended descriptions of the genus Chryseobacterium, C. daecheongense, C. gambrini, C. gleum, C. joostei, C. jejuense, C. luteum, C. shigense, C. taiwanense, C. ureilyticum and C. vrystaatense. Syst Appl Microbiol 2014;37:342–350 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004031
Loading
/content/journal/ijsem/10.1099/ijsem.0.004031
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error