sp. nov., a phenolic acid-degrading bacterium isolated from acidic forest soil Free

Abstract

RP11 was isolated from forest soil following enrichment with 4-hydroxybenzoic acid. Cells of RP11 are aerobic, non-sporulating, exhibit swimming motility, and are rods (0.8 µm by 1.4 µm) that often occur as diplobacillus or in short chains (3–4 cells). Optimal growth on minimal media containing 4-hydroxybenzoic acid (µ=0.216 hr) occurred at 30 °C, pH 6.5 or 7.0 and 0% salinity. Comparative chemotaxonomic, genomic and phylogenetic analyses revealed the isolate was distinct from its closest relative type strains identified as LMG 27731, LMG 16225 and CF1. Strain RP11 is genetically distinct from , its closest relative, in terms of 16S rRNA gene sequence similarity (98.7%), genomic average nucleotide identity (94%) and DNA–DNA hybridization (56.7 %±2.8). The composition of fatty acids and substrate utilization pattern differentiated strain RP11 from its closest relatives, including growth on phthalic acid. Strain RP11 encoded the greatest number of aromatic degradation genes of all eleven closely related type strains and uniquely encoded a phthalic acid dioxygenase and paralog of the 3-hydroxybenzoate 4-monooxygenase. The only ubiquinone detected in strain RP11 was Q-8, and the major cellular fatty acids were C, 3OH-C, C cyclo, C cyclo ω8c, and summed feature 8 (C ω7c/ω6c). On the basis of this polyphasic approach, it was determined that strain RP11 represents a novel species from the genus for which the name sp. nov. is proposed. The type strain is RP11 (=DSM 110123=LMG 31517).

Funding
This study was supported by the:
  • DOE Genomic Science Program (Award DE-SC0016364)
    • Principle Award Recipient: Daniel H. Buckley
  • USDA-AFRI (Award NYC-125502)
    • Principle Award Recipient: Daniel H. Buckley
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004029
2020-02-06
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/3/2137.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004029&mimeType=html&fmt=ahah

References

  1. Sawana A, Adeolu M, Gupta RS. Molecular signatures and phylogenomic analysis of the genus Burkholderia: proposal for division of this genus into the emended genus Burkholderia containing pathogenic organisms and a new genus Paraburkholderia gen. nov. harboring environmental species. Front Genet 2014; 5:1–22 [View Article]
    [Google Scholar]
  2. Beukes CW, Palmer M, Manyaka P, Chan WY, Avontuur JR et al. Genome data provides high support for generic boundaries in Burkholderia sensu lato. Front Microbiol 2017; 8:1–12 [View Article]
    [Google Scholar]
  3. Estrada-de los Santos P, Palmer M, Chávez-Ramírez B, Beukes C, Steenkamp E et al. Whole genome analyses suggests that Burkholderia sensu lato contains two additional novel genera (Mycetohabitans gen. nov., and Trinickia gen. nov.): implications for the evolution of Diazotrophy and nodulation in the Burkholderiaceae . Genes 2018; 9:389 [View Article]
    [Google Scholar]
  4. Dobritsa AP, Samadpour M. Transfer of eleven species of the genus Burkholderia to the genus Paraburkholderia and proposal of Caballeronia gen. nov. to accommodate twelve species of the genera Burkholderia and Paraburkholderia . Int J Syst Evol Microbiol 2016; 66:2836–2846 [View Article]
    [Google Scholar]
  5. Lim JH, Baek S-H, Lee S-T. Burkholderia sediminicola sp. nov., isolated from freshwater sediment. Int J Syst Evol Microbiol 2008; 58:565–569 [View Article]
    [Google Scholar]
  6. Rusch A, Islam S, Savalia P, Amend JP. Burkholderia insulsa sp. nov., a facultatively chemolithotrophic bacterium isolated from an arsenic-rich shallow marine hydrothermal system. Int J Syst Evol Microbiol 2015; 65:189–194 [View Article]
    [Google Scholar]
  7. Aizawa T, Bao Ve N, Vijarnsorn P, Nakajima M, Sunairi M. Burkholderia acidipaludis sp. nov., aluminium-tolerant bacteria isolated from Chinese water chestnut (Eleocharis dulcis) growing in highly acidic swamps in South-East Asia. Int J Syst Evol Microbiol 2010; 60:2036–2041 [View Article]
    [Google Scholar]
  8. Aizawa T, Ve NB, Nakajima M, Sunairi M. Burkholderia heleia sp. nov., a nitrogen-fixing bacterium isolated from an aquatic plant, Eleocharis dulcis, that grows in highly acidic swamps in actual acid sulfate soil areas of Vietnam. Int J Syst Evol Microbiol 2010; 60:1152–1157 [View Article]
    [Google Scholar]
  9. Goris J, Dejonghe W, Falsen E, De Clerck E, Geeraerts B et al. Diversity of Transconjugants that acquired plasmid pJP4 or pEMT1 after inoculation of a donor strain in the A- and B-horizon of an agricultural soil and description of Burkholderia hospita sp. nov. and Burkholderia terricola sp. nov. Syst Appl Microbiol 2002; 25:340–352 [View Article]
    [Google Scholar]
  10. Chain PSG, Denef VJ, Konstantinidis KT, Vergez LM, Agulló L et al. Burkholderia xenovorans LB400 harbors a multi-replicon, 9.73-Mbp genome shaped for versatility. Proc Natl Acad Sci U S A 2006; 103:15280–15287 [View Article]
    [Google Scholar]
  11. Gao Z, Yuan Y, Xu L, Liu R, Chen M et al. Paraburkholderia caffeinilytica sp. nov., isolated from the soil of a tea plantation. Int J Syst Evol Microbiol 2016; 66:4185–4190 [View Article]
    [Google Scholar]
  12. Weber CF, King GM. Volcanic soils as sources of novel co-oxidizing Paraburkholderia and Burkholderia: Paraburkholderia hiiakae sp. nov., Paraburkholderia metrosideri sp. nov., Paraburkholderia paradisi sp. nov., Paraburkholderia peleae sp. nov., and Burkholderia alpina sp. nov. a member of the Burkholderia cepacia complex. Front Microbiol 2017; 8:1–10 [View Article]
    [Google Scholar]
  13. Aizawa T, Vijarnsorn P, Nakajima M, Sunairi M. Burkholderia bannensis sp. nov., an acid-neutralizing bacterium isolated from Torpedo grass (Panicum repens) growing in highly acidic swamps. Int J Syst Evol Microbiol 2011; 61:1645–1650 [View Article]
    [Google Scholar]
  14. Guo JK, Ding YZ, Feng RW, Wang RG, Xu YM et al. Burkholderia metalliresistens sp. nov., a multiple metal-resistant and phosphate-solubilising species isolated from heavy metal-polluted soil in Southeast China. Antonie Van Leeuwenhoek 2015; 107:1591–1598 [View Article]
    [Google Scholar]
  15. Valverde A, Delvasto P, Peix A, Velázquez E, Santa-Regina I et al. Burkholderia ferrariae sp. nov., isolated from an iron ore in Brazil. Int J Syst Evol Microbiol 2006; 56:2421–2425 [View Article]
    [Google Scholar]
  16. JY G, Zang SG, Sheng XF, LY H, Huang Z et al. Burkholderia susongensis sp. Nov., a mineral-weathering bacterium isolated from weathered rock surface. Int J Syst Evol Microbiol 2015; 65:1031–1037
    [Google Scholar]
  17. Lee Y, Jeon CO. Paraburkholderia aromaticivorans sp. nov., an aromatic hydrocarbon-degrading bacterium, isolated from gasoline-contaminated soil. Int J Syst Evol Microbiol 2018; 68:1251–1257 [View Article]
    [Google Scholar]
  18. Sessitsch A et al. Burkholderia phytofirmans sp. nov., a novel plant-associated bacterium with plant-beneficial properties. Int J Syst Evol Microbiol 2005; 55:1187–1192 [View Article]
    [Google Scholar]
  19. Vandamme P, Opelt K, Knöchel N, Berg C, Schönmann S et al. Burkholderia bryophila sp. nov. and Burkholderia megapolitana sp. nov., moss-associated species with antifungal and plant-growth-promoting properties. Int J Syst Evol Microbiol 2007; 57:2228–2235 [View Article]
    [Google Scholar]
  20. Reis VM et al. Burkholderia tropica sp. nov., a novel nitrogen-fixing, plant-associated bacterium. Int J Syst Evol Microbiol 2004; 54:2155–2162 [View Article]
    [Google Scholar]
  21. Perin L et al. Burkholderia silvatlantica sp. nov., a diazotrophic bacterium associated with sugar cane and maize. Int J Syst Evol Microbiol 2006; 56:1931–1937 [View Article]
    [Google Scholar]
  22. Martínez-Aguilar L, Salazar-Salazar C, Méndez RD, Caballero-Mellado J, Hirsch AM et al. Burkholderia caballeronis sp. nov., a nitrogen fixing species isolated from tomato (Lycopersicon esculentum) with the ability to effectively nodulate Phaseolus vulgaris . Antonie van Leeuwenhoek 2013; 104:1063–1071 [View Article]
    [Google Scholar]
  23. Sheu S-Y, Chou J-H, Bontemps C, Elliott GN, Gross E et al. Burkholderia diazotrophica sp. nov., isolated from root nodules of Mimosa spp. Int J Syst Evol Microbiol 2013; 63:435–441 [View Article]
    [Google Scholar]
  24. Choi G-M, Im W-T. Paraburkholderia azotifigens sp. nov., a nitrogen-fixing bacterium isolated from paddy soil. Int J Syst Evol Microbiol 2018; 68:310–316 [View Article]
    [Google Scholar]
  25. Vandamme P, Goris J, Chen W-M, de Vos P, Willems A. Burkholderia tuberum sp. nov. and Burkholderia phymatum sp. nov., nodulate the roots of tropical legumes. Syst Appl Microbiol 2002; 25:507–512 [View Article]
    [Google Scholar]
  26. Chen W-M et al. Burkholderia mimosarum sp. nov., isolated from root nodules of Mimosa spp. from Taiwan and South America. Int J Syst Evol Microbiol 2006; 56:1847–1851 [View Article]
    [Google Scholar]
  27. Sheu S-Y, Chou J-H, Bontemps C, Elliott GN, Gross E et al. Burkholderia symbiotica sp. nov., isolated from root nodules of Mimosa spp. native to north-east Brazil. Int J Syst Evol Microbiol 2012; 62:2272–2278 [View Article]
    [Google Scholar]
  28. De Meyer SE, Cnockaert M, Ardley JK, Trengove RD, Garau G et al. Burkholderia rhynchosiae sp. nov., isolated from Rhynchosia ferulifolia root nodules. Int J Syst Evol Microbiol 2013; 63:3944–3949 [View Article]
    [Google Scholar]
  29. De Meyer SE, Cnockaert M, Ardley JK, Van Wyk B-E, Vandamme PA et al. Burkholderia dilworthii sp. nov., isolated from Lebeckia ambigua root nodules. Int J Syst Evol Microbiol 2014; 64:1090–1095 [View Article]
    [Google Scholar]
  30. Sheu S-Y, Coutinho BG, Howieson JG, Chen M-H, Chen W-M et al. Burkholderia dipogonis sp. nov., isolated from root nodules of Dipogon lignosus in New Zealand and Western Australia. Int J Syst Evol Microbiol 2015; 65:4716–4723 [View Article]
    [Google Scholar]
  31. Steenkamp ET, van Zyl E, Beukes CW, Avontuur JR, Chan WY et al. Burkholderia kirstenboschensis sp. nov. nodulates papilionoid legumes indigenous to South Africa. Syst Appl Microbiol 2015; 38:545–554 [View Article]
    [Google Scholar]
  32. Bournaud C, Moulin L, Cnockaert M, Faria Sde, Prin Y et al. Paraburkholderia piptadeniae sp. nov. and Paraburkholderia ribeironis sp. nov., two root-nodulating symbiotic species of Piptadenia gonoacantha in Brazil. Int J Syst Evol Microbiol 2017; 67:432–440 [View Article]
    [Google Scholar]
  33. De Meyer SE, Cnockaert M, Moulin L, Howieson JG, Vandamme P. Symbiotic and non-symbiotic Paraburkholderia isolated from South African Lebeckia ambigua root nodules and the description of Paraburkholderia fynbosensis sp. nov. Int J Syst Evol Microbiol 2018; 68:2607–2614 [View Article]
    [Google Scholar]
  34. Rahman M, Sabir AA, Mukta JA, Khan MMA, Mohi-Ud-Din M et al. Plant probiotic bacteria Bacillus and Paraburkholderia improve growth, yield and content of antioxidants in strawberry fruit. Sci Rep 2018; 8:1–11 [View Article]
    [Google Scholar]
  35. Ledger T, Rojas S, Timmermann T, Pinedo I, Poupin MJ et al. Volatile-mediated effects predominate in Paraburkholderia phytofirmans growth promotion and salt stress tolerance of Arabidopsis thaliana. Front Microbiol 2016; 7:1–18 [View Article]
    [Google Scholar]
  36. Otsuka Y, Muramatsu Y, Nakagawa Y, Matsuda M, Nakamura M et al. Burkholderia oxyphila sp. nov., a bacterium isolated from acidic forest soil that catabolizes (+)-catechin and its putative aromatic derivatives. Int J Syst Evol Microbiol 2011; 61:249–254 [View Article]
    [Google Scholar]
  37. González PS, Ontañon OM, Armendariz AL, Talano MA, Paisio CE et al. Brassica napus hairy roots and rhizobacteria for phenolic compounds removal. Environ Sci Pollut Res 2013; 20:1310–1317 [View Article]
    [Google Scholar]
  38. Yang H-C, Im W-T, Kim KK, An D-S, Lee S-T et al. Burkholderia terrae sp. nov., isolated from a forest soil. Int J Syst Evol Microbiol 2006; 56:453–457 [View Article]
    [Google Scholar]
  39. Lee C-M, Weon H-Y, Yoon S-H, Kim S-J, Koo B-S et al. Burkholderia denitrificans sp. nov., isolated from the soil of Dokdo Island, Korea. J Microbiol. 2012; 50:855–859 [View Article]
    [Google Scholar]
  40. Kang SR, Srinivasan S, Lee SS. Burkholderia eburnea sp. nov., isolated from peat soil. Int J Syst Evol Microbiol 2014; 64:1108–1115 [View Article]
    [Google Scholar]
  41. Lee J-C, Whang K-S. Burkholderia humisilvae sp. nov., Burkholderia solisilvae sp. nov. and Burkholderia rhizosphaerae sp. nov., isolated from forest soil and rhizosphere soil. Int J Syst Evol Microbiol 2015; 65:2986–2992 [View Article]
    [Google Scholar]
  42. YY L, Chen MH, Xia F, Wang J, Qiu LH. Paraburkholderia pallidirosea sp. nov., isolated from a monsoon evergreen broad-leaved forest soil. Int J Syst Evol Microbiol 2016; 66:4537–4542
    [Google Scholar]
  43. Kim S, Gong G, Min Woo H, Kim Y, Um Y. Burkholderia jirisanensis sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 2016; 66:1260–1267 [View Article]
    [Google Scholar]
  44. Gao Z-hong, Zhong S-fen, Lu Z-er, Xiao S-yang, Qiu L-hong et al. Paraburkholderia caseinilytica sp. nov., isolated from the pine and broad-leaf mixed forest soil. Int J Syst Evol Microbiol 2018; 68:1963–1968
    [Google Scholar]
  45. Coenye T, Laevens S, Willems A, Ohlén M, Hannant W et al. Burkholderia fungorum sp. nov. and Burkholderia caledonica sp. nov., two new species isolated from the environment, animals and human clinical samples. Int J Syst Evol Microbiol 2001; 51:1099–1107 [View Article]
    [Google Scholar]
  46. Valášková V, de Boer W, Klein Gunnewiek PJA, Pospíšek M, Baldrian P. Phylogenetic composition and properties of bacteria coexisting with the fungus Hypholoma fasciculare in decaying wood. ISME J 2009; 3:1218–1221 [View Article]
    [Google Scholar]
  47. Goris J et al. Classification of the biphenyl- and polychlorinated biphenyl-degrading strain LB400T and relatives as Burkholderia xenovorans sp. nov. Int J Syst Evol Microbiol 2004; 54:1677–1681 [View Article]
    [Google Scholar]
  48. Coenye T, Henry D, Speert DP, Vandamme P. Burkholderia phenoliruptrix sp. nov., to accommodate the 2,4,5-trichlorophenoxyacetic acid and halophenol-degrading strain AC1100. Syst Appl Microbiol 2004; 27:623–627 [View Article]
    [Google Scholar]
  49. Zwetsloot MJ, Muñoz Ucros J, Wickings K, Wilhelm RC, Sparks JP et al. Root phenolics drive shifts in microbial community and prime decomposition in forest soil. Soil Biol Biochem
    [Google Scholar]
  50. Wilhelm RC, DeRito CM, Shapleigh JP, Buckley DH, Madsen EL. Phenolic acid-degrading Paraburkholderia prime decomposition in forest soil. In Preperation
    [Google Scholar]
  51. Griffiths RI, Whiteley AS, O'Donnell AG, Bailey MJ. Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-based microbial community composition. Appl Environ Microbiol 2000; 66:5488–5491 [View Article]
    [Google Scholar]
  52. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics 2014; 30:2114–2120 [View Article]
    [Google Scholar]
  53. Gordon A, G.J. H. Fastx-toolkit. FASTQ/A short-reads preprocessing tools ; 2010
  54. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. Journal of Computational Biology 2012; 19:455–477 [View Article]
    [Google Scholar]
  55. Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 2010; 11:119 [View Article]
    [Google Scholar]
  56. Eddy SR. Profile hidden Markov models. Bioinformatics 1998; 14:755–763 [View Article]
    [Google Scholar]
  57. Wilhelm RC, Singh R, Eltis LD, Mohn WW. Bacterial contributions to delignification and lignocellulose degradation in forest soils with metagenomic and quantitative stable isotope probing. Isme J 2019; 13:413–429 [View Article]
    [Google Scholar]
  58. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The seed and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res 2014; 42:D206–D214 [View Article]
    [Google Scholar]
  59. Arkin AP, Cottingham RW, Henry CS, Harris NL, Stevens RL et al. KBase: the United States department of energy systems biology Knowledgebase. Nat Biotechnol 2018; 36:566569 [View Article]
    [Google Scholar]
  60. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10: [View Article]
    [Google Scholar]
  61. Meier-Kolthoff JP, Klenk H-P, Göker M. Taxonomic use of DNA G+C content and DNA–DNA hybridization in the genomic age. Int J Syst Evol Microbiol 2014; 64:352–356 [View Article]
    [Google Scholar]
  62. Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 2015; 31:3210–3212 [View Article]
    [Google Scholar]
  63. Goris J, Klappenbach JA, Vandamme P, Coenye T, Konstantinidis KT et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article]
    [Google Scholar]
  64. Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ani analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun 2018; 9:5114 [View Article]
    [Google Scholar]
  65. Seibold B, Matthes M, Eppink MHM, Lingens F, Berkel W et al. Purification, characterization, gene cloning, sequence analysis and assignment of structural features determining the coenzyme specificity. Eur J Biochem 1996; 239:469–478
    [Google Scholar]
  66. Van Berkel W, Westphal A, Eschrich K, Eppink M, KOK A. Substitution of Arg214 at the substrate-binding site of p-hydroxybenzoate hydroxylase from Pseudomonas fluorescens . Eur J Biochem 1992; 210:411–419 [View Article]
    [Google Scholar]
  67. Eppink MHM, Schreuder HA, Van Berkel WJH. Lys42 and Ser42 variants of p-hydroxybenzoate hydroxylase from Pseudomonas fluorescens reveal that Arg42 is essential for NADPH binding. Eur J Biochem 1998; 253:194–201 [View Article]
    [Google Scholar]
  68. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. technical note 101. Microbial ID, Inc.,Newark, Del 20011–6
    [Google Scholar]
  69. Kaiser P, Geyer R, Surmann P, Fuhrmann H. LC–MS method for screening unknown microbial carotenoids and isoprenoid quinones. J Microbiol Methods 2012; 88:28–34 [View Article]
    [Google Scholar]
  70. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray R, WA W, Krieg N. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp 607–654
    [Google Scholar]
  71. Mavengere NR, Ellis AG, Le Roux JJ. Burkholderia aspalathi sp. nov., isolated from root nodules of the South African legume Aspalathus abietina Thunb. Int J Syst Evol Microbiol 2014; 64:1906–1912 [View Article]
    [Google Scholar]
  72. Whitehead DC, Dibb H, Hartley RD. Extractant pH and the release of phenolic compounds from soils, plant roots and leaf litter. Soil Biology and Biochemistry 1981; 13:343–348 [View Article]
    [Google Scholar]
  73. Munoz Aguilar JM, Ashby AM, Richards AJM, Loake GJ, Watson MD et al. Chemotaxis of Rhizobium leguminosarum biovar phaseoli towards Flavonoid Inducers of the Symbiotic Nodulation Genes. Microbiology 1988; 134:2741–2746 [View Article]
    [Google Scholar]
  74. Mandal SM, Chakraborty D, Dey S. Phenolic acids act as signaling molecules in plant-microbe symbioses. Plant Signal Behav 2010; 5:359–368 [View Article]
    [Google Scholar]
  75. Raj A, Krishna Reddy MM, Chandra R. Identification of low molecular weight aromatic compounds by gas chromatography–mass spectrometry (GC–MS) from kraft lignin degradation by three Bacillus sp. Int Biodeterior Biodegradation 2007; 59:292–296 [View Article]
    [Google Scholar]
  76. Shi Y, Chai L, Tang C, Yang Z, Zheng Y et al. Biochemical investigation of kraft lignin degradation by Pandoraea sp. B-6 isolated from bamboo slips. Bioprocess Biosyst Eng 2013; 36:1957–1965 [View Article]
    [Google Scholar]
  77. Moraes EC, Alvarez TM, Persinoti GF, Tomazetto G, Brenelli LB et al. Lignolytic-consortium omics analyses reveal novel genomes and pathways involved in lignin modification and valorization. Biotechnol Biofuels 2018; 11:1–16 [View Article]
    [Google Scholar]
  78. Nagata Y, Senbongi J, Ishibashi Y, Sudo R, Miyakoshi M et al. Identification of Burkholderia multivorans ATCC 17616 genetic determinants for fitness in soil by using signature-tagged mutagenesis. Microbiology 2014; 160:883–891 [View Article]
    [Google Scholar]
  79. Nishiyama E, Ohtsubo Y, Nagata Y, Tsuda M. Identification of Burkholderia multivorans ATCC 17616 genes induced in soil environment by in vivo expression technology. Environ Microbiol 2010; 12:2539–2558 [View Article]
    [Google Scholar]
  80. Yilmaz P, Parfrey LW, Yarza P, Gerken J, Pruesse E et al. The SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks. Nucleic Acids Res 2014; 42:D643–D648 [View Article]
    [Google Scholar]
  81. Folman LB, Klein Gunnewiek PJA, Boddy L, De Boer W. Impact of white-rot fungi on numbers and community composition of bacteria colonizing beech wood from forest soil. FEMS Microbiol Ecol 2008; 63:181–191 [View Article]
    [Google Scholar]
  82. Valášková V, de Boer W, Klein Gunnewiek PJA, Pospíšek M, Baldrian P. Phylogenetic composition and properties of bacteria coexisting with the fungus Hypholoma fasciculare in decaying wood. ISME J 2009; 3:1218–1221 [View Article]
    [Google Scholar]
  83. Vaidya S, Devpura N, Jain K, Madamwar D. Degradation of chrysene by enriched bacterial Consortium. Front Microbiol 2018; 9:1–14 [View Article]
    [Google Scholar]
  84. Thijs S, Van Dillewijn P, Sillen W, Truyens S, Holtappels M et al. Exploring the rhizospheric and endophytic bacterial communities of Acer pseudoplatanus growing on a TNT-contaminated soil: towards the development of a rhizocompetent TNT-detoxifying plant growth promoting consortium. Plant Soil 2014; 385:15–36 [View Article]
    [Google Scholar]
  85. Le Roux JJ, Mavengere NR, Ellis AG. The structure of legume-rhizobium interaction networks and their response to tree invasions. AoB Plants 2016; 8:plw038 [View Article]
    [Google Scholar]
  86. Dludlu MN, Chimphango SBM, Stirton CH, Muasya AM. Differential preference of Burkholderia and Mesorhizobium to pH and soil types in the Core Cape Subregion, South Africa. Genes 2018; 9:
    [Google Scholar]
  87. Haeckl FPJ, Baldim JL, Iskakova D, Kurita KL, Soares MG et al. A selective genome-guided method for environmental Burkholderia isolation. J Ind Microbiol Biotechnol 2019; 46:345–362 [View Article]
    [Google Scholar]
  88. Colin Y, Nicolitch O, Turpault M-P, Uroz S. Mineral types and tree species determine the functional and taxonomic structures of forest soil bacterial communities. Appl Environ Microbiol 2017; 83:1–23 [View Article]
    [Google Scholar]
  89. Brock DA, Hubert ANM, Noh S, DiSalvo S, Geist KS et al. Endosymbiotic adaptations in three new bacterial species associated with Dictyostelium discoideum: Burkholderia agricolaris sp. nov., Burkholderia hayleyella sp. nov., and Burkholderia bonniea sp. nov. bioRxiv 2018
    [Google Scholar]
  90. Zhalnina K, Louie KB, Hao Z, Mansoori N, da Rocha UN et al. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nat Microbiol 2018; 3:470–480 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004029
Loading
/content/journal/ijsem/10.1099/ijsem.0.004029
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed