1887

Abstract

The Gram-stain-negative, aerobic, non-motile, oxidase- and catalase-positive, rod-shaped yellow-coloured bacterial strain MG-N-17 was isolated from a water sample of Lake Fertő/Neusiedler See (Hungary). Results of phylogenetic analysis based on the 16S rRNA gene sequence revealed that the strain forms a distinct linage within the family of the phylum , and its closest relatives are DSM 4136 (94.38 %) and DC2a-G7 (91.55 %). The novel bacterial strain prefers a weak alkaline environment and grows optimally between 22–28 °C in the absence of NaCl. The major isoprenoid quinones are MK-10, MK-11, MK-12 and MK-9. The major cellular fatty acids are anteiso-C, C, Cω5 and iso-C. The polar lipid profile contains phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, two unidentified phospholipids and four unidentified glycolipids. The assembled draft genome of strain MG-N-17 had 44 contigs with an N50 value 348255 nt, 56.5× genome coverage, total length of 5 910 933 bp and G+C content of 56.9 mol%. Strain MG-N-17 (=DSM 106674=NCAIM B.02643) is proposed as the type strain of a new genus and species in the family , for which the name gen. nov., sp. nov. is proposed.

Funding
This study was supported by the:
  • Nemzeti Kutatási Fejlesztési és Innovációs Hivatal (Award K116275)
    • Principle Award Recipient: Erika Tóth
  • Nemzeti Kutatási Fejlesztési és Innovációs Hivatal (Award NKFIH-1157-8/2019-DT)
    • Principle Award Recipient: Erika Tóth
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004025
2020-02-10
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/3/2108.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004025&mimeType=html&fmt=ahah

References

  1. Ludwig W, Euzéby J, Whitman WB. Taxonomic outlines of the phyla Bacteroidetes, Spirochaetes, Tenericutes (Mollicutes), Acidobacteria, Fibrobacteres, Fusobacteria, Dictyoglomi, Gemmatimonadetes, Lentisphaerae, Verrucomicrobia, Chlamydiae, and Planctomycetes. In Whitman W. editor Bergey’s Manual of Systematic Bacteriology 4, 2nd edn. Baltimore: Williams & Wilkins; 2011 pp 21–24
    [Google Scholar]
  2. Ward-Rainey N, Rainey FA, Schlesner H, Stackebrandt E. Assignment of hitherto unidentified 16S rDNA species to a main line of descent within the domain bacteria. Microbiology 1995; 141:3247–3250 [View Article]
    [Google Scholar]
  3. Schlesner H. Verrucomicrobium spinosum gen. nov., sp. nov.: a fimbriated prosthecate bacterium. Syst Appl Microbiol 1987; 10:54–56 [View Article]
    [Google Scholar]
  4. Staley JT, Bont JA, Jonge K. Prosthecobacter fusiformis nov. gen. et sp., the fusiform caulobacter. Antonie Van Leeuwenhoek 1976; 42:333–342 [View Article]
    [Google Scholar]
  5. Hedlund BP, Gosink JJ, Staley JT. Phylogeny of Prosthecobacter, the fusiform caulobacters: members of a recently discovered division of the bacteria. Int J Syst Bacteriol 1996; 46:960–966 [View Article]
    [Google Scholar]
  6. Lee J, Park B, Woo SG, Lee J, Park J et al. Prosthecobacter algae sp. nov., isolated from activated sludge using algal metabolites. Int J Syst Evol Microbiol 2014; 64:663–667 [View Article]
    [Google Scholar]
  7. Otsuka S, Ueda H, Suenaga T, Uchino Y, Hamada M et al. Roseimicrobium gellanilyticum gen. nov., sp. nov., a new member of the class Verrucomicrobiae. Int J Syst Evol Microbiol 2013; 63:1982–1986 [View Article]
    [Google Scholar]
  8. Otsuka S, Suenaga T, Vu HT, Ueda H, Yokota A et al. Brevifollis gellanilyticus gen. nov., sp. nov., a gellan-gum-degrading bacterium of the phylum Verrucomicrobia. Int J Syst Evol Microbiol 2013; 63:3075–3078 [View Article]
    [Google Scholar]
  9. Hedlund BP, Phylum X. Verrucomicrobia phyl. nov. In Krieg NR, Staley JT, Brown DR, Hedlund BP, Paster BJ. (editors) Bergey’s Manual of Systematic Bacteriology 4, 2nd edn. New York: Springer; 2010 pp 795–841
    [Google Scholar]
  10. Dinka M, Ágoston-Szabó E, Berczik Árpád, Kutrucz G. Influence of water level fluctuation on the spatial dynamic of the water chemistry at lake Fertõ/Neusiedler see. Limnologica 2004; 34:48–56 [View Article]
    [Google Scholar]
  11. Szuróczki S, Kéki Z, Káli S, Lippai A, Márialigeti K et al. Microbiological investigations on the water of a thermal Bath at Budapest. Acta Microbiol Immunol Hung 2016; 63:229–241 [View Article]
    [Google Scholar]
  12. Tóth EM, Vengring A, Homonnay ZG, Kéki Z, Spröer C et al. Phreatobacter oligotrophus gen. nov., sp. nov., an alphaproteobacterium isolated from ultrapure water of the water purification system of a power plant. Int J Syst Evol Microbiol 2014; 64:839–845 [View Article]
    [Google Scholar]
  13. Tóth E, Szuróczki S, Kéki Z, Bóka K, Szili-Kovács T et al. Gellertiella hungarica gen. nov., sp. nov., a novel bacterium of the family Rhizobiaceae isolated from a spa in Budapest. Int J Syst Evol Microbiol 2017; 67:4565–4571 [View Article]
    [Google Scholar]
  14. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article]
    [Google Scholar]
  15. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article]
    [Google Scholar]
  16. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T et al. The Silva ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 2013; 41:D590–D596 [View Article]
    [Google Scholar]
  17. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article]
    [Google Scholar]
  18. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article]
    [Google Scholar]
  19. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article]
    [Google Scholar]
  20. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  21. Swofford DL, Begle PD. PAUP: phylogenetic analysis using parsimony. Smithsonian Institution, Laboratory of Molecular Systematics, Version 3.1. Washington, D.C: 1993 pp 36–37
    [Google Scholar]
  22. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article]
    [Google Scholar]
  23. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article]
    [Google Scholar]
  24. Andrews S. FastQC: a quality control tool for high throughput sequence data; 2010
  25. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article]
    [Google Scholar]
  26. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 2013; 29:1072–1075 [View Article]
    [Google Scholar]
  27. Lee I, Chalita M, Ha S-M, Na S-I, Yoon S-H et al. ContEst16S: an algorithm that identifies contaminated prokaryotic genomes using 16S RNA gene sequences. Int J Syst Evol Microbiol 2017; 67:2053–2057 [View Article]
    [Google Scholar]
  28. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article]
    [Google Scholar]
  29. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article]
    [Google Scholar]
  30. Sittig M, Schlesner H. Chemotaxonomic investigation of various prosthecate and/or budding bacteria. Syst Appl Microbiol 1993; 16:92–103 [View Article]
    [Google Scholar]
  31. Claus D. A standardized gram staining procedure. World J Microbiol Biotechnol 1992; 8:451–452 [View Article]
    [Google Scholar]
  32. Szuróczki S, Khayer B, Spröer C, Toumi M, Szabó A et al. Arundinibacter roseus gen. nov., sp. nov., a new member of the family Cytophagaceae. Int J Syst Evol Microbiol 2019; 69:2076–2081 [View Article]
    [Google Scholar]
  33. Chelius MK, Triplett EW. Dyadobacter fermentans gen. nov., sp. nov., a novel gram-negative bacterium isolated from surface-sterilized Zea mays stems. Int J Syst Evol Microbiol 2000; 50:751–758 [View Article]
    [Google Scholar]
  34. Atlas RM. Handbook of Microbiological Media Parks LC. editor Boca Raton, FL: CRC Press; 1993
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004025
Loading
/content/journal/ijsem/10.1099/ijsem.0.004025
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error