1887

Abstract

In the course of screening halophilic bacteria in Urmia Lake in Iran, which is being threatened by dryness, a novel Gram-negative, moderately halophilic, heterotrophic and short rod-shaped bacteria was isolated and characterized. The bacterium was isolated from a water specimen and designated as TBZ3. Colonies were found to be creamy yellow, with catalase- and oxidase-positive activities. The growth of strain TBZ3 was observed to be at 10–45 °C (optimum, 30 °C), at pH 6.0–9.0 (optimum, pH 7.0) and in the presence of 0.5–20 % (w/v) NaCl (optimum, 7.5 %). Strain TBZ3 contained C, cyclo-C ω8, summed feature 3 (comprising C 7 and/or C 6) and summed feature 8 (comprising C 7 and/or C 6) as major fatty acids and ubiquinone-9 as the only respiratory isoprenoid quinone. Diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, glycolipid, unidentified phospholipid and unidentified polar lipids were detected as the major polar lipids. Strain TBZ3 was found to be most closely related to AJ275 M29 and CPS11 with the 16S rRNA gene sequence similarities of 98.93, 98.15 and 97.60 % respectively and in phylogenetic analysis strain TBZ3 grouped with AJ275 contained within a large cluster within the genus . Based on phenotypic, chemotaxonomic and molecular properties, strain TBZ3 represents a novel species of the genus, for which the name sp. nov. is proposed. The type strain is TBZ3 (=DSM 22871=LMG 25416).

Funding
This study was supported by the:
  • Collection of Domestic Biological Resources from the National Institute of Biological Resources, Korea (Award NIBR No. 2019-02-001)
    • Principle Award Recipient: Che Ok Jeon
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004005
2020-02-10
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/4/2254.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004005&mimeType=html&fmt=ahah

References

  1. Vreeland RH, Litchfield CD, Martin EL, Elliot E, elongata H. A new genus and species of extremely salt-tolerant bacteria. Int J Syst Evol Microbiol 1980; 30:485–495
    [Google Scholar]
  2. Lee J-C, Kim Y-S, Yun B-S, Whang K-S, Whang K-S, Yun BS. Halomonas salicampi sp. nov., a halotolerant and alkalitolerant bacterium isolated from a saltern soil. Int J Syst Evol Microbiol 2015; 65:4792–4799 [View Article]
    [Google Scholar]
  3. Gan L, Long X, Zhang H, Hou Y, Tian J et al. Halomonas saliphila sp. nov., a moderately halophilic bacterium isolated from a saline soil. Int J Syst Evol Microbiol 2018; 68:1153–1159 [View Article]
    [Google Scholar]
  4. Oguntoyinbo FA, Cnockaert M, Cho G-S, Kabisch J, Neve H et al. Halomonas nigrificans sp. nov., isolated from cheese. Int J Syst Evol Microbiol 2018; 68:371–376 [View Article]
    [Google Scholar]
  5. Xu L, Xu X-W, Meng F-X, Huo Y-Y, Oren A et al. Halomonas zincidurans sp. nov., a heavy-metal-tolerant bacterium isolated from the deep-sea environment. Int J Syst Evol Microbiol 2013; 63:4230–4236 [View Article]
    [Google Scholar]
  6. Gaboyer F, Vandenabeele-Trambouze O, Cao J, Ciobanu M-C, Jebbar M et al. Physiological features of Halomonas lionensis sp. nov., a novel bacterium isolated from a Mediterranean Sea sediment. Res Microbiol 2014; 165:490–500 [View Article]
    [Google Scholar]
  7. Wang T, Wei X, Xin Y, Zhuang J, Shan S et al. Halomonas lutescens sp. nov., a halophilic bacterium isolated from a lake sediment. Int J Syst Evol Microbiol 2016; 66:4697–4704 [View Article]
    [Google Scholar]
  8. Vahed SZ, Forouhandeh H, Tarhriz V, Chaparzadeh N, Hejazi MA et al. Halomonas tabrizica sp. nov., a novel moderately halophilic bacterium isolated from Urmia Lake in Iran. Antonie van Leeuwenhoek 2018; 111:1139–1148 [View Article]
    [Google Scholar]
  9. XW X, YH W, Zhou Z, Wang CS, Zhou YG et al. Halomonas saccharevitans sp. nov., Halomonas arcis sp. nov. and Halomonas subterranea sp. nov., halophilic bacteria isolated from hypersaline environments of China. Int J Syst Evol Microbiol 2007; 57:1619–1624
    [Google Scholar]
  10. Guadie A, Gessesse A, Xia S. Halomonas sp. strain A55, a novel dye decolorizing bacterium from dye-uncontaminated Rift Valley Soda lake. Chemosphere 2018; 206:59–69 [View Article]
    [Google Scholar]
  11. Arenas M, Banon PI, Copa-Patino JL, Sanchez-Porro C, Ventosa A et al. Halomonas ilicicola sp. nov., a moderately halophilic bacterium isolated from a saltern. Int J Syst Evol Microbiol 2009; 59:578–582 [View Article]
    [Google Scholar]
  12. Amjres H, Bejar V, Quesada E, Abrini J, Llamas I. Halomonas rifensis sp. nov., an exopolysaccharide-producing, halophilic bacterium isolated from a solar saltern. Int J Syst Evol Microbiol 2011; 61:2600–2605 [View Article]
    [Google Scholar]
  13. Lee J-C, Kim S-J, Whang K-S. Halomonas sediminicola sp. nov., a moderately halophilic bacterium isolated from a solar saltern sediment. Int J Syst Evol Microbiol 2016; 66:3865–3872 [View Article]
    [Google Scholar]
  14. Kaye JZ, Márquez MC, Ventosa A, Baross JA. Halomonas neptunia sp. nov., Halomonas sulfidaeris sp. nov., Halomonas axialensis sp. nov. and Halomonas hydrothermalis sp. nov.: halophilic bacteria isolated from deep-sea hydrothermal-vent environments. Int J Syst Evol Microbiol 2004; 54:499–511 [View Article]
    [Google Scholar]
  15. Kaye JZ, Sylvan JB, Edwards KJ, Baross JA. Halomonas and Marinobacter ecotypes from hydrothermal vent, subseafloor and deep-sea environments. FEMS Microbiol Ecol 2011; 75:123–133 [View Article]
    [Google Scholar]
  16. Eimanifar A, Mohebbi F, Lake U. Northwest Iran): a brief review. Saline systems 2007; 3:5
    [Google Scholar]
  17. Vahed SZ, Forouhandeh H, Hassanzadeh S, Klenk H-P, Hejazi MA et al. Isolation and characterization of halophilic bacteria from Urmia lake in Iran. Microbiology 2011; 80:834–841 [View Article]
    [Google Scholar]
  18. Hossein Mardi A, Khaghani A, MacDonald AB, Nguyen P, Karimi N et al. The lake Urmia environmental disaster in Iran: a look at aerosol pollution. Sci Total Environ 2018; 633:42–49 [View Article]
    [Google Scholar]
  19. Jeihouni M, Toomanian A, Alavipanah SK, Hamzeh S. Quantitative assessment of Urmia lake water using spaceborne multisensor data and 3D modeling. Environ Monit Assess 2017; 189:572 [View Article]
    [Google Scholar]
  20. Sharifi A, Shah-Hosseini M, Pourmand A, Esfahaninejad M, Haeri-Ardakani O. The vanishing of Urmia lake: a geolimnological perspective on the hydrological imbalance of the world’s second largest hypersaline lake. The Handbook of Environmental Chemistry 2018; 1:38
    [Google Scholar]
  21. Chen X, Yu L, Qiao G, Chen G-Q. Reprogramming Halomonas for industrial production of chemicals. J Ind Microbiol Biotechnol 2018; 45:545–554 [View Article]
    [Google Scholar]
  22. Ren Y, Ling C, Hajnal I, Wu Q, Chen G-Q. Construction of Halomonas bluephagenesis capable of high cell density growth for efficient PHA production. Appl Microbiol Biotechnol 2018; 102:4499–4510 [View Article]
    [Google Scholar]
  23. Tohme S, Hacıosmanoğlu GG, Eroğlu MS, Kasavi C, Genç S et al. Halomonas smyrnensis as a cell factory for co-production of PHB and levan. Int J Biol Macromol 2018; 118:1238–1246 [View Article]
    [Google Scholar]
  24. Ling C, Qiao G-Q, Shuai B-W, Olavarria K, Yin J et al. Engineering NADH/NAD+ ratio in Halomonas bluephagenesis for enhanced production of polyhydroxyalkanoates (PHA). Metab Eng 2018; 49:275–286 [View Article]
    [Google Scholar]
  25. Kirtel O, Menéndez C, Versluys M, Van den Ende W, Hernández L et al. Levansucrase from Halomonas smyrnensis AAD6T: first halophilic GH-J clan enzyme recombinantly expressed, purified, and characterized. Appl Microbiol Biotechnol 2018; 102:9207–9220 [View Article]
    [Google Scholar]
  26. Llamas I, Bejar V, Martinez-Checa F, Martinez-Canovas MJ, Molina I et al. Halomonas stenophila sp. nov., a halophilic bacterium that produces sulphate exopolysaccharides with biological activity. Int J Syst Evol Microbiol 2011; 61:2508–2514 [View Article]
    [Google Scholar]
  27. Mata JA, Béjar V, Llamas I, Arias S, Bressollier P et al. Exopolysaccharides produced by the recently described halophilic bacteria Halomonas ventosae and Halomonas anticariensis . Res Microbiol 2006; 157:827–835 [View Article]
    [Google Scholar]
  28. Corti Monzón G, Nisenbaum M, Herrera Seitz MK, Murialdo SE. New findings on aromatic compounds’ degradation and their metabolic pathways, the biosurfactant production and motility of the halophilic bacterium Halomonas sp. KHS3. Curr Microbiol 2018; 75:1108–1118 [View Article]
    [Google Scholar]
  29. Garcia MT, Mellado E, Ostos JC, Ventosa A. Halomonas organivorans sp. nov., a moderate halophile able to degrade aromatic compounds. Int J Syst Evol Microbiol 2004; 54:1723–1728 [View Article]
    [Google Scholar]
  30. Liebgott P-P, Labat M, Amouric A, Tholozan J-L, Lorquin J. Tyrosol degradation via the homogentisic acid pathway in a newly isolated Halomonas strain from olive processing effluents. J Appl Microbiol 2008; 105:2084–2095 [View Article]
    [Google Scholar]
  31. Mnif S, Chamkha M, Sayadi S. Isolation and characterization of Halomonas sp. strain C2SS100, a hydrocarbon-degrading bacterium under hypersaline conditions. J Appl Microbiol 2009; 107:785–794 [View Article]
    [Google Scholar]
  32. Xu Y, Liu Y, Xu B, Wang D, Jiang W. Characterisation and application of Halomonas shantousis SWA25, a halotolerant bacterium with multiple biogenic amine degradation activity. Food Addit Contam 2016; 33:674–682
    [Google Scholar]
  33. Hajizadeh N, Sefidi Heris Y, Zununi Vahed S, Vallipour J, Hejazi MA et al. Biodegradation of Para Amino Acetanilide by Halomonas sp. TBZ3. Jundishapur J Microbiol 2015; 8:18622 [View Article]
    [Google Scholar]
  34. Heris YS, Hajizadeh N, Vahed SZ, Vallipour J, Hejazi MA et al. Fe (III) reduction by Halomonas sp. TBZ9 and Maribobacter sp TBZ23, isolated from Urmia Lake in Iran. Adv Environ Biol 2014; 8:59–66
    [Google Scholar]
  35. Vreeland RH, Martin EL. Growth characteristics, effects of temperature, and ion specificity of the halotolerant bacterium Halomonas elongata . Can J Microbiol 1980; 26:746–752 [View Article]
    [Google Scholar]
  36. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article]
    [Google Scholar]
  37. Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 2007; 73:5261–5267 [View Article]
    [Google Scholar]
  38. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article]
    [Google Scholar]
  39. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article]
    [Google Scholar]
  40. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article]
    [Google Scholar]
  41. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article]
    [Google Scholar]
  42. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article]
    [Google Scholar]
  43. Gomori G. Preparation of buffers for use in enzyme studies. Methods Enzymol 1955; 1:138–146
    [Google Scholar]
  44. Kodaka H, Armfield AY, Lombard GL, Dowell VR. Practical procedure for demonstrating bacterial flagella. J Clin Microbiol 1982; 16:948–952 [View Article]
    [Google Scholar]
  45. Smibert RA, Krieg NR. Phenotypic characterization. In Gerhardt P. editor Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp 607–654
    [Google Scholar]
  46. Lányi B. Classical and rapid identification methods for medically important bacteria. Methods Microbiol 1988; 19:1–67
    [Google Scholar]
  47. Komagata K, Suzuki KI. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1988; 19:161–207
    [Google Scholar]
  48. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  49. Minnikin DE, Patel PV, Alshamaony L, Goodfellow M. Polar lipid composition in the classification of Nocardia and related bacteria. Int J Syst Bacteriol 1977; 27:104–117 [View Article]
    [Google Scholar]
  50. Kim KK, Jin L, Yang HC, Lee S-T. Halomonas gomseomensis sp. nov., Halomonas janggokensis sp. nov., Halomonas salaria sp. nov. and Halomonas denitrificans sp. nov., moderately halophilic bacteria isolated from saline water. Int J Syst Evol Microbiol 2007; 57:675–681 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004005
Loading
/content/journal/ijsem/10.1099/ijsem.0.004005
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error