1887

Abstract

A Gram-reaction-positive, endospore-forming and rod-shaped bacterial strain, designated py1325, was isolated from the root of Smith var. collected from Yunnan Province, PR China, and subjected to a polyphasic taxonomic characterization. It grew optimally with 0–1 % NaCl (w/v), at pH 7 and at 30 °C. The major respiratory quinone was MK-7 and the diagnostic diamino acid in the cell-wall peptidoglycan was -diaminopimelic acid. The major cellular fatty acid was anteiso-C. The polar lipids consisted of phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, two unidentified aminophospholipids, two unidentified phospholipids and two unidentified lipids. The results of 16S rRNA gene sequence analysis revealed the highest levels of sequence similarity with respect to R-3 (99.0 %), CCTCC AB 2016047 (97.9 %), DSM 19417 (97.5 %) and LMG 27297 (97.2 %). The digital DNA–DNA hybridization and average nucleotide identity values between py1325 and these species ranged 20.6–53.3 % and 79.9–93.6 %. The G+C content of the genomic DNA was 47.7 mol%. According to the phylogenetic, phenotypic and chemotaxonomic evidence, strain py1325 clearly represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is py1325 (=CCTCC AB 2015220=LMG 29068).

Funding
This study was supported by the:
  • the National Natural Science Foundation of China (Award 31560309)
    • Principle Award Recipient: Xiao-Yang Zhi
  • the National Natural Science Foundation of China (Award 31500007)
    • Principle Award Recipient: Ling-Ling Yang
  • Program for Excellent Young Talents, Yunnan University
    • Principle Award Recipient: Xiao-Yang Zhi
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003997
2020-01-22
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/3/1940.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003997&mimeType=html&fmt=ahah

References

  1. Ash C, Priest FG, Collins MD. Molecular identification of rRna group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus . Antonie van Leeuwenhoek 1993; 64:253–260
    [Google Scholar]
  2. Ash C, Priest FG, Collins MD. Paenibacillus gen. nov. and Paenibacillus polymyxa comb. nov. In validation of the publication of new names and new combinations previously effectively published outside the IJSB, List no. 51. Int J Syst Evol Microbiol 1994; 44:852
    [Google Scholar]
  3. Judicial Commission of the International Committee on Systematics of Prokaryotes The type species of the genus Paenibacillus Ash, et al. 1994 is Paenibacillus polymyxa. Opinion 77. Int J Syst Evol Microbiol 2005; 55:513 [View Article]
    [Google Scholar]
  4. Priest FG. Genus I. Paenibacillus . In De Vos P, Garrity G, Jones D, Krieg NR, Ludwig W. (editors) Bergey’s Manual of Systematic Bacteriology 3 New York: Springer; 2009 pp 269–327
    [Google Scholar]
  5. Yang L-L, Tang S-K, Chu X, Jiang Z, Xu L-H et al. Oceanobacillus endoradicis sp. nov., an endophytic bacterial species isolated from the root of Paris polyphylla Smith var. yunnanensis . Antonie Van Leeuwenhoek 2016; 109:957–964 [View Article]
    [Google Scholar]
  6. Gregersen T. Rapid method for distinction of Gram-negative from Gram-positive bacteria. Eur J Appl Microbiol Biotechnol 1978; 5:123–127 [View Article]
    [Google Scholar]
  7. Xu P et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family 'Oxalobacteraceae' isolated from China. Int J Syst Evol Microbiol 2005; 55:1149–1153 [View Article]
    [Google Scholar]
  8. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974; 28:226–231 [View Article]
    [Google Scholar]
  9. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [View Article]
    [Google Scholar]
  10. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  11. Hasegawa T, Takizawa M, Tanida S. A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 1983; 29:319–322 [View Article]
    [Google Scholar]
  12. Li W-J, Xu P, Schumann P, Zhang Y-Q, Pukall R et al. Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia . Int J Syst Evol Microbiol 2007; 57:1424–1428 [View Article]
    [Google Scholar]
  13. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article]
    [Google Scholar]
  14. Thompson J, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article]
    [Google Scholar]
  15. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425
    [Google Scholar]
  16. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article]
    [Google Scholar]
  17. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  18. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article]
    [Google Scholar]
  19. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article]
    [Google Scholar]
  20. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article]
    [Google Scholar]
  21. Luo R, Liu B, Xie Y, Li Z, Huang W et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 2012; 1:18 [View Article]
    [Google Scholar]
  22. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article]
    [Google Scholar]
  23. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article]
    [Google Scholar]
  24. Yoon S-H, Ha S-min, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 2017; 110:1281–1286 [View Article]
    [Google Scholar]
  25. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60–73 [View Article]
    [Google Scholar]
  26. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article]
    [Google Scholar]
  27. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc Committee on reconciliation of approaches to bacterial Systematics. Int J Syst Evol Microbiol 1987; 37:463–464 [View Article]
    [Google Scholar]
  28. Logan NA, Berge O, Bishop AH, Busse H-J, De Vos P et al. Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. Int J Syst Evol Microbiol 2009; 59:2114–2121 [View Article]
    [Google Scholar]
  29. Zhang Y, Zhuang J, Pang H, Wang Y, Li Y et al. Paenibacillus luteus sp. nov., isolated from soil. Int J Syst Evol Microbiol 2019; 69:2354–2359 [View Article]
    [Google Scholar]
  30. Chen C, Xin K, Li M, Li X, Cheng J et al. Paenibacillus sinopodophylli sp. nov., a siderophore-producing endophytic bacterium isolated from roots of Sinopodophyllum hexandrum (Royle) Ying. Int J Syst Evol Microbiol 2016; 66:4993–4999 [View Article]
    [Google Scholar]
  31. Carro L, Flores-Félix JD, Cerda-Castillo E, Ramírez-Bahena MH, Igual JM et al. Paenibacillus endophyticus sp. nov., isolated from nodules of Cicer arietinum . Int J Syst Evol Microbiol 2013; 63:4433–4438 [View Article]
    [Google Scholar]
  32. Valverde A, Peix A, Rivas R, Velázquez E, Salazar S et al. Paenibacillus castaneae sp. nov., isolated from the phyllosphere of Castanea sativa Miller. Int J Syst Evol Microbiol 2008; 58:2560–2564 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003997
Loading
/content/journal/ijsem/10.1099/ijsem.0.003997
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error