1887

Abstract

A novel, Gram-stain-positive, aerobic, non-endospore-forming, non-motile and rod-shaped bacterium designated RB2 was isolated from sap of collected in Mulei county, Xinjiang province, PR China. RB2 was able to grow at 10–45 °C (optimum 35 °C), pH 6.0–12.0 (optimum 8.0) and with 0–12 % (w/v) NaCl (optimum 1 %). The genomic DNA G+C content was 63.5 % (from the genome sequence). The results of the chemotaxonomic analysis indicated that the predominant isoprenoid quinones were MK-8 and MK-9. The major fatty acids were anteiso-C and anteiso-C. The major polar lipids of RB2 were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol and two glycolipids. The peptidoglycan type of RB2 was A4, -Lys–Gly–-Glu. The results of the phylogenetic analysis, along with the phenotypic and chemotaxonomic characteristics, indicate that strain RB2 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is RB2 (=MCCC 1K03528=KCTC 49017).

Funding
This study was supported by the:
  • the Science Foundation of Zhejiang Sci-Tech University (Award 16042186-Y)
    • Principle Award Recipient: Min Wu
  • Zhejiang Province Public Welfare Technology Application Research Project (CN) (Award 2017C33030)
    • Principle Award Recipient: Min Wu
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003988
2020-01-22
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/3/1888.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003988&mimeType=html&fmt=ahah

References

  1. Stackebrandt E, Koch C, Gvozdiak O, Schumann P. Taxonomic dissection of the genus Micrococcus: Kocuria gen. nov., Nesterenkonia gen. nov., Kytococcus gen. nov., Dermacoccus gen. nov., and Micrococcus Cohn 1872 gen. emend. Int J Syst Bacteriol 1995; 45:682–692 [View Article]
    [Google Scholar]
  2. Collins MD, Lawson PA, Labrenz M, Tindall BJ, Weiss N et al. Nesterenkonia lacusekhoensis sp. nov., isolated from hypersaline Ekho Lake, East Antarctica, and emended description of the genus Nesterenkonia . Int J Syst Evol Microbiol 2002; 52:1145–1150 [View Article]
    [Google Scholar]
  3. Li WJ, Chen HH, Kim CJ, Zhang YQ, Park DJ et al. Nesterenkonia sandarakina sp. nov. and Nesterenkonia lutea sp. nov., novel actinobacteria, and emended description of the genus Nesterenkonia . Int J Syst Evol Microbiol 2005; 55:463–466
    [Google Scholar]
  4. Dong XZ, Cai MY. Determinative Manual for Routine Bacteriology Beijing: Scientific Press (English translation); 2001
    [Google Scholar]
  5. Pan J, Sun C, Zhang XQ, Huo YY, Zhu XF et al. A novel species from marine sediment of Pacific Ocean as Paracoccus sediminis sp. nov. Int J Syst Evol Microbiol 2014; 64:2512–2516
    [Google Scholar]
  6. Smibert R. Phenotypic characterization.. In Murray RGE, Wood WA, Krieg NR, Gerhardt P. (editors) Methods for General and Molecular Bacteriology Washington, DC, USA: American Society for Microbiology; 1994 pp 607–654
    [Google Scholar]
  7. Zhu X-F, Jia X-M, Zhang X-Q, Y-H W, Chen Z-Y et al. Modern Experimental Technique of Microbiology Hangzhou: Zhejiang University Press (English translation); 2017
    [Google Scholar]
  8. Zhang W-Y, Huo Y-Y, Zhang X-Q, Zhu X-F, Wu M. Halolamina salifodinae sp. nov. and Halolamina salina sp. nov., two extremely halophilic archaea isolated from a salt mine. Int J Syst Evol Microbiol 2013; 63:4380–4385 [View Article]
    [Google Scholar]
  9. Lányi B. Classical and rapid identification methods for medically important bacteria. Methods Microbiol 1988; 19:1–67
    [Google Scholar]
  10. Leifson E. Determination of carbohydrate metabolism of marine bacteria. J Bacteriol 1963; 85:1183–1184 [View Article]
    [Google Scholar]
  11. Kuykendall LD, Roy MA, O'NEILL JJ, Devine TE. Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum . Int J Syst Bacteriol 1988; 38:358–361 [View Article]
    [Google Scholar]
  12. Komagata K, Suzuki KI. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987; 19:161–205
    [Google Scholar]
  13. Schleifer KH, Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 1972; 36:407–477 [View Article]
    [Google Scholar]
  14. Minnikin DE, Patel PV, Alshamaony L, Goodfellow M. Polar lipid composition in the classification of Nocardia and related bacteria. Int J Syst Bacteriol 1977; 27:104–117 [View Article]
    [Google Scholar]
  15. Jia Y-Y, Sun C, Pan J, Zhang W-Y, Zhang X-Q et al. Devosia pacifica sp. nov., isolated from deep-sea sediment. Int J Syst Evol Microbiol 2014; 64:2637–2641 [View Article]
    [Google Scholar]
  16. Embley TM. The linear PCR reaction: a simple and robust method for sequencing amplified rRNA genes. Lett Appl Microbiol 1991; 13:171–174 [View Article]
    [Google Scholar]
  17. Kim O-S, Cho Y-J, Lee K, Yoon S-H, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article]
    [Google Scholar]
  18. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011; 28:2731–2739 [View Article]
    [Google Scholar]
  19. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425
    [Google Scholar]
  20. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article]
    [Google Scholar]
  21. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  22. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article]
    [Google Scholar]
  23. Xu L, Wu Y-H, Zhou P, Cheng H, Liu Q et al. Investigation of the thermophilic mechanism in the genus Porphyrobacter by comparative genomic analysis. BMC Genomics 2018; 19:385 [View Article]
    [Google Scholar]
  24. Delcher AL, Bratke KA, Powers EC, Salzberg SL. Identifying bacterial genes and endosymbiont DNA with glimmer. Bioinformatics 2007; 23:673–679 [View Article]
    [Google Scholar]
  25. Ross O, Robert O, Pusch GD, Olsen GJ, Davis JJ et al. The seed and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res 2014; 42:D206–D214
    [Google Scholar]
  26. Li L, Roos DS. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res 2003; 13:2178–2189 [View Article]
    [Google Scholar]
  27. Kazutaka K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Bio Evol 2013; 30:772–780
    [Google Scholar]
  28. Salvador CG, Silla-Martínez JM, Toni G. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009; 25:1972–1973
    [Google Scholar]
  29. Lam-Tung N, Schmidt HA, Arndt VH, Bui Quang M. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Bio Evol 2015; 32:268–274
    [Google Scholar]
  30. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJM et al. ABySS: a parallel assembler for short read sequence data. Genome Res 2009; 19:1117–1123 [View Article]
    [Google Scholar]
  31. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article]
    [Google Scholar]
  32. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article]
    [Google Scholar]
  33. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article]
    [Google Scholar]
  34. Goris J, Klappenbach JA, Vandamme P, Coenye T, Konstantinidis KT et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article]
    [Google Scholar]
  35. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article]
    [Google Scholar]
  36. Zhang G, Zhang Y, Yin X, Wang S. Nesterenkonia alkaliphila sp. nov., an alkaliphilic, halotolerant actinobacteria isolated from the Western Pacific Ocean. Int J Syst Evol Microbiol 2015; 65:516–521 [View Article]
    [Google Scholar]
  37. Luo H-Y, Wang Y-R, Miao L-H, Yang P-L, Shi P-J et al. Nesterenkonia alba sp. nov., an alkaliphilic actinobacterium isolated from the black liquor treatment system of a cotton pulp mill. Int J Syst Evol Microbiol 2009; 59:863–868 [View Article]
    [Google Scholar]
  38. Liu J-M, Tuo L, Habden X, Guo L, Jiang Z-K et al. Nesterenkonia populi sp. nov., an actinobacterium isolated from Populus euphratica . Int J Syst Evol Microbiol 2015; 65:1474–1479 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003988
Loading
/content/journal/ijsem/10.1099/ijsem.0.003988
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error