1887

Abstract

A novel, Gram-stain-positive, aerobic, non-endospore-forming, non-motile and rod-shaped bacterium designated RB2 was isolated from sap of collected in Mulei county, Xinjiang province, PR China. RB2 was able to grow at 10–45 °C (optimum 35 °C), pH 6.0–12.0 (optimum 8.0) and with 0–12 % (w/v) NaCl (optimum 1 %). The genomic DNA G+C content was 63.5 % (from the genome sequence). The results of the chemotaxonomic analysis indicated that the predominant isoprenoid quinones were MK-8 and MK-9. The major fatty acids were anteiso-C and anteiso-C. The major polar lipids of RB2 were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol and two glycolipids. The peptidoglycan type of RB2 was A4, -Lys–Gly–-Glu. The results of the phylogenetic analysis, along with the phenotypic and chemotaxonomic characteristics, indicate that strain RB2 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is RB2 (=MCCC 1K03528=KCTC 49017).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003988
2020-01-22
2020-02-28
Loading full text...

Full text loading...

References

  1. Stackebrandt E, Koch C, Gvozdiak O, Schumann P. Taxonomic dissection of the genus Micrococcus: Kocuria gen. nov., Nesterenkonia gen. nov., Kytococcus gen. nov., Dermacoccus gen. nov., and Micrococcus Cohn 1872 gen. emend. Int J Syst Bacteriol 1995;45: 682– 692 [CrossRef]
    [Google Scholar]
  2. Collins MD, Lawson PA, Labrenz M, Tindall BJ, Weiss N et al. Nesterenkonia lacusekhoensis sp. nov., isolated from hypersaline Ekho Lake, East Antarctica, and emended description of the genus Nesterenkonia. Int J Syst Evol Microbiol 2002;52: 1145– 1150 [CrossRef]
    [Google Scholar]
  3. Li WJ, Chen HH, Kim CJ, Zhang YQ, Park DJ et al. Nesterenkonia sandarakina sp. nov. and Nesterenkonia lutea sp. nov., novel actinobacteria, and emended description of the genus Nesterenkonia. Int J Syst Evol Microbiol 2005;55: 463– 466
    [Google Scholar]
  4. Dong XZ, Cai MY. Determinative Manual for Routine Bacteriology Beijing: Scientific Press (English translation); 2001
    [Google Scholar]
  5. Pan J, Sun C, Zhang XQ, Huo YY, Zhu XF et al. A novel species from marine sediment of Pacific Ocean as Paracoccus sediminis sp. nov. Int J Syst Evol Microbiol 2014;64: 2512– 2516
    [Google Scholar]
  6. Smibert R. Phenotypic characterization. In Murray RGE, Wood WA, Krieg NR, Gerhardt P. (editors) Methods for General and Molecular Bacteriology Washington, DC, USA: American Society for Microbiology; 1994; pp 607– 654
    [Google Scholar]
  7. Zhu X-F, Jia X-M, Zhang X-Q, Y-H W, Chen Z-Y et al. Modern Experimental Technique of Microbiology Hangzhou: Zhejiang University Press (English translation); 2017
    [Google Scholar]
  8. Zhang W-Y, Huo Y-Y, Zhang X-Q, Zhu X-F, Wu M. Halolamina salifodinae sp. nov. and Halolamina salina sp. nov., two extremely halophilic archaea isolated from a salt mine. Int J Syst Evol Microbiol 2013;63: 4380– 4385 [CrossRef]
    [Google Scholar]
  9. Lányi B. Classical and rapid identification methods for medically important bacteria. Methods Microbiol 1988;19: 1– 67
    [Google Scholar]
  10. Leifson E. Determination of carbohydrate metabolism of marine bacteria. J Bacteriol 1963;85: 1183– 1184 [CrossRef]
    [Google Scholar]
  11. Kuykendall LD, Roy MA, O'NEILL JJ, Devine TE. Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 1988;38: 358– 361 [CrossRef]
    [Google Scholar]
  12. Komagata K, Suzuki KI. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987;19: 161– 205
    [Google Scholar]
  13. Schleifer KH, Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 1972;36: 407– 477 [CrossRef]
    [Google Scholar]
  14. Minnikin DE, Patel PV, Alshamaony L, Goodfellow M. Polar lipid composition in the classification of Nocardia and related bacteria. Int J Syst Bacteriol 1977;27: 104– 117 [CrossRef]
    [Google Scholar]
  15. Jia Y-Y, Sun C, Pan J, Zhang W-Y, Zhang X-Q et al. Devosia pacifica sp. nov., isolated from deep-sea sediment. Int J Syst Evol Microbiol 2014;64: 2637– 2641 [CrossRef]
    [Google Scholar]
  16. Embley TM. The linear PCR reaction: a simple and robust method for sequencing amplified rRNA genes. Lett Appl Microbiol 1991;13: 171– 174 [CrossRef]
    [Google Scholar]
  17. Kim O-S, Cho Y-J, Lee K, Yoon S-H, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62: 716– 721 [CrossRef]
    [Google Scholar]
  18. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011;28: 2731– 2739 [CrossRef]
    [Google Scholar]
  19. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4: 406– 425
    [Google Scholar]
  20. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17: 368– 376 [CrossRef]
    [Google Scholar]
  21. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971;20: 406– 416 [CrossRef]
    [Google Scholar]
  22. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16: 111– 120 [CrossRef]
    [Google Scholar]
  23. Xu L, Wu Y-H, Zhou P, Cheng H, Liu Q et al. Investigation of the thermophilic mechanism in the genus Porphyrobacter by comparative genomic analysis. BMC Genomics 2018;19: 385 [CrossRef]
    [Google Scholar]
  24. Delcher AL, Bratke KA, Powers EC, Salzberg SL. Identifying bacterial genes and endosymbiont DNA with glimmer. Bioinformatics 2007;23: 673– 679 [CrossRef]
    [Google Scholar]
  25. Ross O, Robert O, Pusch GD, Olsen GJ, Davis JJ et al. The seed and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res 2014;42: D206– D214
    [Google Scholar]
  26. Li L, Roos DS. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res 2003;13: 2178– 2189 [CrossRef]
    [Google Scholar]
  27. Kazutaka K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Bio Evol 2013;30: 772– 780
    [Google Scholar]
  28. Salvador CG, Silla-Martínez JM, Toni G. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009;25: 1972– 1973
    [Google Scholar]
  29. Lam-Tung N, Schmidt HA, Arndt VH, Bui Quang M. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Bio Evol 2015;32: 268– 274
    [Google Scholar]
  30. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJM et al. ABySS: a parallel assembler for short read sequence data. Genome Res 2009;19: 1117– 1123 [CrossRef]
    [Google Scholar]
  31. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015;25: 1043– 1055 [CrossRef]
    [Google Scholar]
  32. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14: 60 [CrossRef]
    [Google Scholar]
  33. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016;66: 1100– 1103 [CrossRef]
    [Google Scholar]
  34. Goris J, Klappenbach JA, Vandamme P, Coenye T, Konstantinidis KT et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007;57: 81– 91 [CrossRef]
    [Google Scholar]
  35. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009;106: 19126– 19131 [CrossRef]
    [Google Scholar]
  36. Zhang G, Zhang Y, Yin X, Wang S. Nesterenkonia alkaliphila sp. nov., an alkaliphilic, halotolerant actinobacteria isolated from the Western Pacific Ocean. Int J Syst Evol Microbiol 2015;65: 516– 521 [CrossRef]
    [Google Scholar]
  37. Luo H-Y, Wang Y-R, Miao L-H, Yang P-L, Shi P-J et al. Nesterenkonia alba sp. nov., an alkaliphilic actinobacterium isolated from the black liquor treatment system of a cotton pulp mill. Int J Syst Evol Microbiol 2009;59: 863– 868 [CrossRef]
    [Google Scholar]
  38. Liu J-M, Tuo L, Habden X, Guo L, Jiang Z-K et al. Nesterenkonia populi sp. nov., an actinobacterium isolated from Populus euphratica. Int J Syst Evol Microbiol 2015;65: 1474– 1479 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003988
Loading
/content/journal/ijsem/10.1099/ijsem.0.003988
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error