1887

Abstract

Two aerobic, Gram-stain-positive, catalase-positive, non-motile and rod-shaped bacterial strains, designated MF30-A and MF845, were isolated from the intestinal contents of plateau pika collected from the Qinghai–Tibet Plateau. Optimal growth of these two strains was observed under aerobic conditions at pH 7.0 and 28 °C. The 16S rRNA gene sequences of the isolates had highest similarities of 98.5 and 98.4 % to , respectively. In the 16S rRNA gene and polygenetic trees, strains MF30-A and MF845 were clearly distinct from other species. The two strains could not produce acid from arbutin, -fructose, D-sucrose, glycogen, salicin or starch. Production of β-glucosidase by these strains was negative. The major fatty acids of these strains were anteiso-C, anteiso-C and iso-C. Strain MF30-A contained galactose, rhamnose and ribose as cell wall sugars and MK-12 and MK-11 as predominant menaquinones. The major polar lipids in strain MF30-A were diphosphatidylglycerol, phosphatidylglycerol and a glycolipid, while the peptidoglycan contained alanine, glutamic acid, glycine and 2,4-diaminobutyric acid. The G+C contents of the DNA of strains MF30-A and MF845 were 69.8 mol% and 69.7 mol%, respectively. The average nucleotide identity and digital DNA–DNA relatedness values of the two strains with all available genomes of the genus were far below the respective thresholds of 95 and 70 %, respectively. All genotypic and phenotypic data indicated that strains MF30-A and MF845 should be classified as novel members of the genus , for which the name sp. nov. is proposed. The type strain is MF30-A (=CGMCC 1.16469=DSM 106183).

Funding
This study was supported by the:
  • Jianguo Xu , Chinese Academy of Medical Sciences and Sanming Project of Medicine in Shenzhen , (Award SZSM201811071)
  • Jianguo Xu , Research Units of Discovery of Unknown Bacteria and Function , (Award 2018RU010)
  • Zhihong Ren , National Science and Technology Major Project of China , (Award 2018ZX10305409-003)
  • Jing Yang , National Science and Technology Major Project of China , (Award 2018ZX10712001-007)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003987
2020-02-25
2020-06-04
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/4/2247.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003987&mimeType=html&fmt=ahah

References

  1. Gledhill WE, Casida LE. Predominant catalase-negative soil bacteria. III. Agromyces, gen. N., microorganisms intermediary to Actinomyces and Nocardia. Appl Microbiol 1969; 18:340–349 [CrossRef]
    [Google Scholar]
  2. Zgurskaya HI, Evtushenko LI, Akimov VN, Voyevoda HV, Dobrovolskaya TG et al. Emended description of the genus Agromyces and description of Agromyces cerinus subsp. cerinus sp. nov., subsp. nov., Agromyces cerinus subsp. nitratus sp. nov., subsp. nov., Agromyces fucosus subsp. fucosus sp. nov., subsp. nov., and Agromyces fucosus subsp. hippuratus sp. nov., subsp. nov. Int J Syst Bacteriol 1992; 42:635–641 [CrossRef]
    [Google Scholar]
  3. Corretto E, Antonielli L, Sessitsch A, Compant S, Gorfer M et al. Agromyces aureus sp. nov., isolated from the rhizosphere of Salix caprea L. grown in a heavy-metal-contaminated soil. Int J Syst Evol Microbiol 2016; 66:3749–3754 [CrossRef]
    [Google Scholar]
  4. Zhang D-C, Schumann P, Liu H-C, Xin Y-H, Zhou Y-G et al. Agromyces bauzanensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 2010; 60:2341–2345 [CrossRef]
    [Google Scholar]
  5. Chen J, Chen HM, Zhang YQ, Wei YZ, QP L et al. Agromyces flavus sp. nov., an actinomycete isolated from soil. Int J Syst Evol Microbiol 1709; 2011:1705
    [Google Scholar]
  6. Jung S-Y, Lee S-Y, Oh T-K, Yoon J-H. Agromyces allii sp. nov., isolated from the rhizosphere of Allium victorialis var. platyphyllum . Int J Syst Evol Microbiol 2007; 57:588–593 [CrossRef]
    [Google Scholar]
  7. Takeuchi M, Hatano K. Agromyces luteolus sp. nov., Agromyces rhizospherae sp. nov. and Agromyces bracchium sp. nov., from the mangrove rhizosphere. Int J Syst Evol Microbiol 2001; 51:1529–1537 [CrossRef]
    [Google Scholar]
  8. Jurado V, Groth I, Gonzalez JM, Laiz L, Saiz-Jimenez C. Agromyces subbeticus sp. nov., isolated from a cave in southern Spain. Int J Syst Evol Microbiol 2005; 55:1897–1901 [CrossRef]
    [Google Scholar]
  9. Chen Z, Guan Y, Wang J, Li J. Agromyces binzhouensis sp. nov., an actinobacterium isolated from a coastal wetland of the yellow River delta. Int J Syst Evol Microbiol 2016; 66:2278–2283 [CrossRef]
    [Google Scholar]
  10. Jurado V, Groth I, Gonzalez JM, Laiz L, Schuetze B et al. Agromyces italicus sp. nov., Agromyces humatus sp. nov. and Agromyces lapidis sp. nov., isolated from Roman catacombs. Int J Syst Evol Microbiol 2005; 55:871–875 [CrossRef]
    [Google Scholar]
  11. Rivas R, Trujillo ME, Mateos PF, Martínez-Molina E, Velázquez E. Agromyces ulmi sp. nov., a xylanolytic bacterium isolated from Ulmus nigra in Spain. Int J Syst Evol Microbiol 1990; 2004:1987
    [Google Scholar]
  12. Qu J, Li W, Yang M, Ji W, Zhang Y. Life history of the plateau pika (Ochotona curzoniae) in alpine meadows of the Tibetan Plateau. Mamm Biol 2013; 78:68–72 [CrossRef]
    [Google Scholar]
  13. Bai X, Zhang W, Tang X, Xin Y, Xu Y et al. Shiga Toxin-Producing Escherichia coli in Plateau Pika (Ochotona curzoniae) on the Qinghai-Tibetan Plateau, China. Front Microbiol 2016; 7:375 [CrossRef]
    [Google Scholar]
  14. Zhang L, Qu J, Li K, Li W, Yang M et al. Genetic diversity and sex-bias dispersal of plateau pika in Tibetan plateau. Ecol Evol 2017; 7:7708–7718 [CrossRef]
    [Google Scholar]
  15. Meng X, Wang Y, Lu S, Lai X-H, Jin D et al. Actinomyces gaoshouyii sp. nov., isolated from plateau pika (Ochotona curzoniae). Int J Syst Evol Microbiol 2017; 67:3363–3368 [CrossRef]
    [Google Scholar]
  16. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [CrossRef]
    [Google Scholar]
  17. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [CrossRef]
    [Google Scholar]
  18. Kolaczkowski B, Thornton JW. Performance of maximum parsimony and likelihood phylogenetics when evolution is heterogeneous. Nature 2004; 431:980–984 [CrossRef]
    [Google Scholar]
  19. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [CrossRef]
    [Google Scholar]
  20. Price MN, Dehal PS, Arkin AP. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol 2009; 26:1641–1650 [CrossRef]
    [Google Scholar]
  21. Huson DH, Scornavacca C. Dendroscope 3: an interactive tool for rooted phylogenetic trees and networks. Syst Biol 2012; 61:1061–1067 [CrossRef]
    [Google Scholar]
  22. Ortiz-Martinez A, Gonzalez JM, Evtushenko LI, Jurado V, Laiz L et al. Reclassification of Agromyces fucosus subsp. hippuratus as Agromyces hippuratus sp. nov., comb. nov. and emended description of Agromyces fucosus . Int J Syst Evol Microbiol 2004; 54:1553–1556 [CrossRef]
    [Google Scholar]
  23. Park E-J, Kim M-S, Jung M-J, Roh SW, Chang H-W et al. Agromyces atrinae sp. nov., isolated from fermented seafood. Int J Syst Evol Microbiol 2010; 60:1056–1059 [CrossRef]
    [Google Scholar]
  24. Collins MD, Jones D. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev 1981; 45:316354 [CrossRef]
    [Google Scholar]
  25. Altenburgera P, Kämpferb P, Makristathisc A, Lubitza W, Bussea H-J. Classification of bacteria isolated from a medieval wall painting. J Biotechnol 1996; 47:39–52 [CrossRef]
    [Google Scholar]
  26. Tindall BJ. Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 1990; 66:199–202 [CrossRef]
    [Google Scholar]
  27. Hasegawa T, Takizawa M, Tanida S. A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 1983; 29:319–322 [CrossRef]
    [Google Scholar]
  28. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [CrossRef]
    [Google Scholar]
  29. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [CrossRef]
    [Google Scholar]
  30. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [CrossRef]
    [Google Scholar]
  31. Wayne LG. International Committee on systematic bacteriology: announcement of the report of the AD hoc Committee on reconciliation of approaches to bacterial Systematics. Zentralbl Bakteriol Mikrobiol Hyg A 1988; 268:433–434 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003987
Loading
/content/journal/ijsem/10.1099/ijsem.0.003987
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error