sp. nov., isolated from coastal seawater Free

Abstract

A Gram-stain-negative, rod-shaped, aerobic, non-flagellated, chemoheterotrophic bacterium, designated IMCC14385, was isolated from surface seawater of the East Sea, Republic of Korea. The 16S rRNA gene sequence analysis indicated that IMCC14385 represented a member of the genus sharing 94.6–97.8 % similarities with species of the genus. Whole-genome sequencing of IMCC14385 revealed a genome size of 4.3 Mbp and DNA G+C content of 56.7 mol%. The genome of IMCC14385 shared an average nucleotide identity of 76.6 % and digital DNA–DNA hybridization value of 21.6 % with the genome of KCTC 23429. The genome encoded the complete poly--hydroxybutyrate biosynthesis pathway. The strain contained summed feature 8 (C 7 and/or C 6), summed feature 3 (C 7 and/or C 6) and C 8 as the predominant cellular fatty acids as well as ubiquinone-8 (Q-8) as the respiratory quinone. The polar lipids detected in the strain were phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, five unidentified phospholipids, an unidentified aminolipid, an unidentified aminophospholipid and four unidentified lipids. On the basis of taxonomic data obtained in this study, it is suggested that IMCC14385 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is IMCC14385 (=KCTC 72520=NBRC 114072).

Funding
This study was supported by the:
  • National Research Council of Science and Technology (Award 2018R1A5A1025077)
    • Principle Award Recipient: Jang-Cheon Cho
  • Korea Institute of Marine Science and Technology promotion (Award No. 20180430)
    • Principle Award Recipient: Jang-Cheon Cho
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003985
2020-01-27
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/3/1868.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003985&mimeType=html&fmt=ahah

References

  1. Spring S, Scheuner C, Göker M, Klenk H-P. A taxonomic framework for emerging groups of ecologically important marine gammaproteobacteria based on the reconstruction of evolutionary relationships using genome-scale data. Front Microbiol 2015; 6:281 [View Article]
    [Google Scholar]
  2. Rappé MS, Kemp PF, Giovannoni SJ. Phylogenetic diversity of marine coastal picoplankton 16S rRNA genes cloned from the continental shelf off Cape Hatteras, North Carolina. Limnol Oceanogr 1997; 42:811–826 [View Article]
    [Google Scholar]
  3. Fuchs BM, Spring S, Teeling H, Quast C, Wulf J et al. Characterization of a marine gammaproteobacterium capable of aerobic anoxygenic photosynthesis. Proc Natl Acad Sci USA 2007; 104:2891–2896 [View Article]
    [Google Scholar]
  4. Cho J-C, Giovannoni SJ. Cultivation and growth characteristics of a diverse group of oligotrophic marine Gammaproteobacteria . Appl Environ Microbiol 2004; 70:432–440 [View Article]
    [Google Scholar]
  5. Csotonyi JT, Stackebrandt E, Swiderski J, Schumann P, Yurkov V. Chromocurvus halotolerans gen. nov., sp. nov., a gammaproteobacterial obligately aerobic anoxygenic phototroph, isolated from a Canadian hypersaline spring. Arch Microbiol 2011; 193:573–582 [View Article]
    [Google Scholar]
  6. Spring S, Lünsdorf H, Fuchs BM, Tindall BJ. The photosynthetic apparatus and its regulation in the aerobic gammaproteobacterium Congregibacter litoralis gen. nov., sp. nov. PLoS One 2009; 4:e4866 [View Article]
    [Google Scholar]
  7. Lin C-Y, Zhang X-Y, Liu A, Liu C, Song X-Y et al. Haliea atlantica sp. nov., isolated from seawater, transfer of Haliea mediterranea to Parahaliea gen. nov. as Parahaliea mediterranea comb. nov. and emended description of the genus Haliea . Int J Syst Evol Microbiol 2015; 65:3413–3418 [View Article]
    [Google Scholar]
  8. Urios L, Intertaglia L, Lesongeur F, Lebaron P. Haliea rubra sp. nov., a member of the Gammaproteobacteria from the Mediterranean Sea. Int J Syst Evol Microbiol 2009; 59:1188–1192 [View Article]
    [Google Scholar]
  9. Urios L, Intertaglia L, Lesongeur F, Lebaron P. Haliea salexigens gen. nov., sp. nov., a member of the Gammaproteobacteria from the Mediterranean sea. Int J Syst Evol Microbiol 2008; 58:1233–1237 [View Article]
    [Google Scholar]
  10. Park S, Yoshizawa S, Inomata K, Kogure K, Yokota A. Halioglobus japonicus gen. nov., sp. nov. and Halioglobus pacificus sp. nov., members of the class Gammaproteobacteria isolated from seawater. Int J Syst Evol Microbiol 2012; 62:1784–1789 [View Article]
    [Google Scholar]
  11. Shi M-J, Wang C, Wang X-T, Du Z-J. Halioglobus lutimaris sp. nov., isolated from coastal sediment. Int J Syst Evol Microbiol 2018; 68:876–880 [View Article]
    [Google Scholar]
  12. Han J-R, Ye M-Q, Wang C, Du Z-J. Halioglobus sediminis sp. nov., isolated from coastal sediment. Int J Syst Evol Microbiol 2019; 69:1601–1605 [View Article]
    [Google Scholar]
  13. Spring S, Riedel T, Spröer C, Yan S, Harder J et al. Taxonomy and evolution of bacteriochlorophyll a-containing members of the OM60/NOR5 clade of marine gammaproteobacteria: description of Luminiphilus syltensis gen. nov., sp. nov., reclassification of Haliea rubra as Pseudohaliea rubra gen. nov., comb. nov., and emendation of Chromatocurvus halotolerans . BMC Microbiol 2013; 13:118 [View Article]
    [Google Scholar]
  14. Konkit M, Kim J-H, Kim W. Marimicrobium arenosum gen. nov., sp. nov., a moderately halophilic bacterium isolated from sea sand. Int J Syst Evol Microbiol 2016; 66:856–861 [View Article]
    [Google Scholar]
  15. Jung HS, Jeong SE, Kim KH, Jeon CO. Parahaliea aestuarii sp. nov., isolated from the Asan Bay estuary. Int J Syst Evol Microbiol 2017; 67:1431–1435 [View Article]
    [Google Scholar]
  16. Chang Y-Q, Meng X, Du Z-Z, Du Z-J. Kineobactrum sediminis gen. nov., sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 2019; 69:2395–2400 [View Article]
    [Google Scholar]
  17. Eilers H, Pernthaler J, Glöckner FO, Amann R. Culturability and in situ abundance of pelagic bacteria from the North Sea. Appl Environ Microbiol 2000; 66:30443051 [View Article]
    [Google Scholar]
  18. Yan S, Fuchs BM, Lenk S, Harder J, Wulf J et al. Biogeography and phylogeny of the NOR5/OM60 clade of Gammaproteobacteria . Syst Appl Microbiol 2009; 32:124–139 [View Article]
    [Google Scholar]
  19. Jang Y, Oh H-M, Kang I, Lee K, Yang S-J et al. Genome sequence of strain IMCC3088, a proteorhodopsin-containing marine bacterium belonging to the OM60/NOR5 clade. J Bacteriol 2011; 193:3415–3416 [View Article]
    [Google Scholar]
  20. Emil Ruff S, Probandt D, Zinkann A-C, Iversen MH, Klaas C et al. Indications for algae-degrading benthic microbial communities in deep-sea sediments along the Antarctic polar front. Deep Sea Research Part II: Topical Studies in Oceanography 2014; 108:6–16 [View Article]
    [Google Scholar]
  21. Choi A, Cho H, Kim B, Kim HC, Jung RH et al. Effects of finfish aquaculture on biogeochemistry and bacterial communities associated with sulfur cycles in highly sulfidic sediments. Aquac Environ Interact 2018; 10:413–427 [View Article]
    [Google Scholar]
  22. Yamamoto K, Shiwa Y, Ishige T, Sakamoto H, Tanaka K et al. Bacterial diversity associated with the rhizosphere and endosphere of two halophytes: Glaux maritima and Salicornia europaea . Front Microbiol 2018; 9:2878 [View Article]
    [Google Scholar]
  23. Davis M, Garey J. Microbial function and hydrochemistry within a stratified anchialine sinkhole: a window into coastal aquifer interactions. Water 2018; 10:972 [View Article]
    [Google Scholar]
  24. Najafi A, Moradinasab M, Nabipour I. First record of Microbiomes of sponges collected from the Persian Gulf, using tag pyrosequencing. Front Microbiol 2018; 9:1500 [View Article]
    [Google Scholar]
  25. Yang S-J, Kang I, Cho J-C. Expansion of cultured bacterial diversity by large-scale dilution-to-extinction culturing from a single seawater sample. Microb Ecol 2016; 71:29–43 [View Article]
    [Google Scholar]
  26. Song J, Oh H-M, Cho J-C. Improved culturability of SAR11 strains in dilution-to-extinction culturing from the East Sea, West Pacific Ocean. FEMS Microbiol Lett 2009; 295:141–147 [View Article]
    [Google Scholar]
  27. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173:697703 [View Article]
    [Google Scholar]
  28. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article]
    [Google Scholar]
  29. Pruesse E, Peplies J, Glöckner FO. Sina: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012; 28:1823–1829 [View Article]
    [Google Scholar]
  30. Ludwig W, Strunk O, Westram R, Richter L, Meier H et al. ARB: a software environment for sequence data. Nucleic Acids Res 2004; 32:1363–1371 [View Article]
    [Google Scholar]
  31. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article]
    [Google Scholar]
  32. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425
    [Google Scholar]
  33. Rzhetsky A, Nei M. Theoretical foundation of the minimum-evolution method of phylogenetic inference. Mol Biol Evol 1993; 10:1073–1095
    [Google Scholar]
  34. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article]
    [Google Scholar]
  35. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article]
    [Google Scholar]
  36. Hunt M, Silva ND, Otto TD, Parkhill J, Keane JA et al. Circlator: automated circularization of genome assemblies using long sequencing reads. Genome Biol 2015; 16:294 [View Article]
    [Google Scholar]
  37. Markowitz VM, Mavromatis K, Ivanova NN, Chen I-MA, Chu K et al. IMG ER: a system for microbial genome annotation expert review and curation. Bioinformatics 2009; 25:2271–2278 [View Article]
    [Google Scholar]
  38. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article]
    [Google Scholar]
  39. Kanehisa M, Sato Y, Morishima K, BlastKOALA MK. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol 2016; 428:726–731 [View Article]
    [Google Scholar]
  40. Yoon S-H, Ha S-min, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article]
    [Google Scholar]
  41. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article]
    [Google Scholar]
  42. Na S-I, Kim YO, Yoon S-H, Ha S-M, Baek I et al. UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [View Article]
    [Google Scholar]
  43. Galperin MY, Makarova KS, Wolf YI, Koonin EV. Expanded microbial genome coverage and improved protein family annotation in the COG database. Nucleic Acids Res 2015; 43:D261–D269 [View Article]
    [Google Scholar]
  44. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article]
    [Google Scholar]
  45. Goris J, Klappenbach JA, Vandamme P, Coenye T, Konstantinidis KT et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article]
    [Google Scholar]
  46. Cho J-C, Giovannoni SJ. Parvularcula bermudensis gen. nov., sp. nov., a marine bacterium that forms a deep branch in the α -Proteobacteria . Int J Syst Evol Microbiol 2003; 53:1031–1036 [View Article]
    [Google Scholar]
  47. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  48. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids; 1990
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003985
Loading
/content/journal/ijsem/10.1099/ijsem.0.003985
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed