sp. nov. and sp. nov., isolated from a wastewater treatment plant Free

Abstract

Two Gram-stain-negative, aerobic, motile and rod-shaped bacteria, one designated as strain AXB, capable of degrading estrogens, and another, YL23, capable of degrading estrogen and bisphenol A, were isolated from activated sludge in Xiamen City, PR China. The optimum temperature and pH of both strains were 25–35 °C and pH 7.0–8.0. While strain AXB could tolerate 3 % (w/v) NaCl, YL23 could only grow between 0–1 % (w/v) NaCl. They contained ubiquinone-10 as the major quinone, spermidine as the major polyamine, summed feature 8 (comprising Cω6 and/or Cω7) as the major fatty acids and diphosphatidylglycerol, phosphatidylcholine, phosphatidyldimethylethanolamine, phosphatidylethanolamine, phosphatidylglycerol and sphingoglycolipid as the major polar lipids. The DNA G+C contents of strains AXB and YL23 were 63.6 and 63.7 mol%, respectively. Based on the results of 16S rRNA gene sequence analysis, strains AXB and YL23 belonged to the genus . Strain AXB was most closely related to NBRC 16172 (97.5 %) and DJ77 (97.2 %), and strain YL23 was most closely related to NBRC 16172 (97.4 %) and P25 (97.1 %). Average nucleotide identity values between these two strains and NBRC 16172, DJ77, IP26, P25 and UT26S were from 80.7 to 85.8 %. In conclusion, strains AXB and YL23 represent novel species of the genus , for which the names sp. nov. and sp. nov. are proposed, respectively. The type strains of and are AXB (=MCCC 1K01232=DSM 102173) and YL23 (=MCCC 1K02300=DSM 102172), respectively.

Funding
This study was supported by the:
  • National Natural Science Foundation of China (Award 41673099)
    • Principle Award Recipient: Chang-Ping Yu
  • National Natural Science Foundation of China (Award 41807411)
    • Principle Award Recipient: Dan Qin
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003978
2020-02-12
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/3/1822.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003978&mimeType=html&fmt=ahah

References

  1. Takeuchi M, Hamana K, Hiraishi A. Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 2001; 51:1405–1417 [View Article]
    [Google Scholar]
  2. Yabuuchi E, Yano I, Oyaizu H, Hashimoto Y, Ezaki T et al. Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas . Microbiol Immunol 1990; 34:99–119 [View Article]
    [Google Scholar]
  3. Chen H, Jogler M, Rohde M, Klenk H-P, Busse H-J et al. Reclassification and emended description of Caulobacter leidyi as Sphingomonas leidyi comb. nov., and emendation of the genus Sphingomonas . Int J Syst Evol Microbiol 2012; 62:2835–2843 [View Article]
    [Google Scholar]
  4. Yan Q-X, Wang Y-X, Li S-P, Li W-J, Hong Q. Sphingobium qiguonii sp. nov., a carbaryl-degrading bacterium isolated from a wastewater treatment system. Int J Syst Evol Microbiol 2010; 60:2724–2728 [View Article]
    [Google Scholar]
  5. Garg N, Bala K, Lal R. Sphingobium lucknowense sp. nov., a hexachlorocyclohexane (HCH)-degrading bacterium isolated from HCH-contaminated soil. Int J Syst Evol Microbiol 2012; 62:618–623 [View Article]
    [Google Scholar]
  6. Wang B-Z, Guo P, Zheng J-W, Hang B-J, Li L et al. Sphingobium wenxiniae sp. nov., a synthetic pyrethroid (SP)-degrading bacterium isolated from activated sludge in an SP-manufacturing wastewater treatment facility. Int J Syst Evol Microbiol 2011; 61:1776–1780 [View Article]
    [Google Scholar]
  7. Ma C, Qin D, Sun Q, Zhang F, Liu H et al. Removal of environmental estrogens by bacterial cell immobilization technique. Chemosphere 2016; 144:607–614 [View Article]
    [Google Scholar]
  8. Hu A, Lv M, Yu C-P. Draft genome sequence of the bisphenol A-degrading bacterium Sphingobium sp. strain YL23. Genome Announc 2013; 1: [View Article]
    [Google Scholar]
  9. Chaudhary DK, Jeong S-W, Kim J. Sphingobium naphthae sp. nov., with the ability to degrade aliphatic hydrocarbons, isolated from oil-contaminated soil. Int J Syst Evol Microbiol 2017; 67:2986–2993 [View Article]
    [Google Scholar]
  10. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article]
    [Google Scholar]
  11. Böltner D, Moreno-Morillas S, Ramos J-L, Morillas-MS RJL. 16S rDNA phylogeny and distribution of lin genes in novel hexachlorocyclohexane-degrading Sphingomonas strains. Environ Microbiol 2005; 7:1329–1338 [View Article]
    [Google Scholar]
  12. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article]
    [Google Scholar]
  13. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article]
    [Google Scholar]
  14. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article]
    [Google Scholar]
  15. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  16. Luo R, Liu B, Xie Y, Li Z, Huang W et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 2012; 1:18 [View Article]
    [Google Scholar]
  17. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article]
    [Google Scholar]
  18. Auch AF, von Jan M, Klenk H-P, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134 [View Article]
    [Google Scholar]
  19. Qin D, Ma C, Hu A, Zhang F, Hu H et al. Altererythrobacter estronivorus sp. nov., an Estrogen-Degrading Strain Isolated from Yundang Lagoon of Xiamen City in China. Curr Microbiol 2016; 72:634–640 [View Article]
    [Google Scholar]
  20. Cowan ST, Steel KJ. Manual for the Identification of Medical Bacteria London: Cambridge University Press; 1965
    [Google Scholar]
  21. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM. (editors) Methods for General and Molecular Bacteriology, 3rd ed. Washington, DC: ASM Press; 2007 pp 330–393
    [Google Scholar]
  22. Smibert RM KN. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC, USA: American Society for Microbiology; 1994 pp 607–654
    [Google Scholar]
  23. Coenye T, Laevens S, Gillis M, Vandamme P. Genotypic and chemotaxonomic evidence for the reclassification of Pseudomonas woodsii (Smith 1911) Stevens 1925 as Burkholderia andropogonis (Smith 1911) Gillis et al. 1995. Int J Syst Evol Microbiol 2001; 51:183–185 [View Article]
    [Google Scholar]
  24. Kates M. Techniques of lipidology. , 2nd ed.rev. Amsterdam: Elesevier; 1986 pp 106-7–241-6
  25. Huang M-M, Guo L-L, Wu Y-H, Lai Q-L, Shao Z-Z et al. Pseudooceanicola lipolyticus sp. nov., a marine alphaproteobacterium, reclassification of Oceanicola flagellatus as Pseudooceanicola flagellatus comb. nov. and emended description of the genus Pseudooceanicola . Int J Syst Evol Microbiol 2018; 68:409–415 [View Article]
    [Google Scholar]
  26. Busse H-J, Bunka S, Hensel A, Lubitz W. Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Evol Microbiol 1997; 47:698–708 [View Article]
    [Google Scholar]
  27. Stolz A, Busse H-J, Kämpfer P. Pseudomonas knackmussii sp. nov. Int J Syst Evol Microbiol 2007; 57:572–576 [View Article]
    [Google Scholar]
  28. Dadhwal M, Jit S, Kumari H, Lal R. Sphingobium chinhatense sp. nov., a hexachlorocyclohexane (HCH)-degrading bacterium isolated from an HCH dumpsite. Int J Syst Evol Microbiol 2009; 59:3140–3144 [View Article]
    [Google Scholar]
  29. Lee Y, Jeon CO. Sphingobium paulinellae sp. nov. and Sphingobium algicola sp. nov., isolated from a freshwater green alga Paulinella chromatophora. Int J Syst Evol Microbiol 2017; 67:5165–5171 [View Article]
    [Google Scholar]
  30. Pal R, Bala S, Dadhwal M, Kumar M, Dhingra G et al. Hexachlorocyclohexane-degrading bacterial strains Sphingomonas paucimobilis B90A, UT26 and Sp+, having similar lin genes, represent three distinct species, Sphingobium indicum sp. nov., Sphingobium japonicum sp. nov. and Sphingobium francense sp. nov., and reclassification of [Sphingomonas] chungbukensis as Sphingobium chungbukense comb. nov. Int J Syst Evol Microbiol 2005; 55:1965–1972 [View Article]
    [Google Scholar]
  31. Yabuuchi E, Kosako Y, Fujiwara N, Naka T, Matsunaga I et al. Emendation of the genus Sphingomonas Yabuuchi et al. 1990 and junior objective synonymy of the species of three genera, Sphingobium, Novosphingobium and Sphingopyxis, in conjunction with Blastomonas ursincola. Int J Syst Evol Microbiol 2002; 52:1485–1496 [View Article]
    [Google Scholar]
  32. Chen H, Jogler M, Rohde M, Klenk H-P, Busse H-J et al. Sphingobium limneticum sp. nov. and Sphingobium boeckii sp. nov., two freshwater planktonic members of the family Sphingomonadaceae, and reclassification of Sphingomonas suberifaciens as Sphingobium suberifaciens comb. nov. Int J Syst Evol Microbiol 2013; 63:735–743 [View Article]
    [Google Scholar]
  33. Le Moine Bauer S, Sjøberg AG, L'Haridon S, Stokke R, Roalkvam I et al. Profundibacter amoris gen. nov., sp. nov., a new member of the Roseobacter clade isolated from loki's Castle vent field on the Arctic Mid-Ocean Ridge. Int J Syst Evol Microbiol 2019; 69:975–981 [View Article]
    [Google Scholar]
  34. Stackebrandt E, Frederiksen W, Garrity GM, Grimont PAD, Kämpfer P et al. Report of the AD hoc Committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 2002; 52:1043–1047 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003978
Loading
/content/journal/ijsem/10.1099/ijsem.0.003978
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed