1887

Abstract

Solar panel surfaces, although subjected to a range of extreme environmental conditions, are inhabited by a diverse microbial community adapted to solar radiation, desiccation and temperature fluctuations. This is the first time a new bacterial species has been isolated from this environment. Strain R4DWN belongs to the genus and was isolated from a solar panel surface in Boston, MA, USA. Strain R4DWN is a Gram-negative, non-motile and rod-shaped bacteria that tested positive for oxidase and catalase and forms round-shaped, shiny and orange-coloured colonies. It is mesophilic, neutrophilic and non-halophilic, and presents a more stenotrophic metabolism than its closest neighbours. The major fatty acids in this strain are Cω7/Cω6, Cω7/Cω6 , C 2OH and C. Comparison of 16S rRNA gene sequences revealed that the closest type strains to R4DWN are , , , and with 96.3, 96.1, 96.0, 95.9 and 95.7 % pairwise similarity, respectively. The genomic G+C content of R4DWN is 67.9 mol%. Based on these characteristics, strain R4DWN represents a novel species of the genus for which the name sp. nov. is proposed with the type strain R4DWN (=CECT 9811=LMG 31344).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003977
2020-01-17
2020-02-28
Loading full text...

Full text loading...

References

  1. Yabuuchi E, Yano I, Oyaizu H, Hashimoto Y, Ezaki T et al. Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas. Microbiol Immunol 1990;34: 99– 119 [CrossRef]
    [Google Scholar]
  2. Takeuchi M, Sawada H, Oyaizu H, Yokota A. Phylogenetic evidence for Sphingomonas and Rhizomonas as nonphotosynthetic members of the alpha-4 subclass of the Proteobacteria. Int J Syst Bacteriol 1994;44: 308– 314 [CrossRef]
    [Google Scholar]
  3. White DC, Sutton SD, Ringelberg DB. The genus Sphingomonas: physiology and ecology. Curr Opin Biotechnol 1996;7: 301– 306 [CrossRef]
    [Google Scholar]
  4. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67: 1613– 1617 [CrossRef]
    [Google Scholar]
  5. Zhao Q, Yue S, Bilal M, Hu H, Wang W et al. Comparative genomic analysis of 26 Sphingomonas and Sphingobium strains: Dissemination of bioremediation capabilities, biodegradation potential and horizontal gene transfer. Sci Total Environ 2017;609: 1238– 1247 [CrossRef]
    [Google Scholar]
  6. Fujiwara H, Soda S, Fujita M, Ike M. Kinetics of bisphenol A degradation by Sphingomonas paucimobilis FJ-4. J Biosci Bioeng 2016;122: 341– 344 [CrossRef]
    [Google Scholar]
  7. Gatheru Waigi M, Sun K, Gao Y. Sphingomonads in microbe-assisted phytoremediation: tackling soil pollution. Trends Biotechnol 2017;35: 883– 899 [CrossRef]
    [Google Scholar]
  8. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark: DE: MIDI Inc; 1990
    [Google Scholar]
  9. MIDI Sherlock Microbial Identification System Operating Manual, version 6.1. Newark, DE: MIDI Inc; 2008
    [Google Scholar]
  10. Wittich R-M, Busse H-J, Kämpfer P, Macedo AJ, Tiirola M et al. Sphingomonas fennica sp. nov. and Sphingomonas haloaromaticamans sp. nov., outliers of the genus Sphingomonas. Int J Syst Evol Microbiol 2007;57: 1740– 1746 [CrossRef]
    [Google Scholar]
  11. Lin S-Y, Shen F-T, Lai W-A, Zhu Z-L, Chen W-M et al. Sphingomonas formosensis sp. nov., a polycyclic aromatic hydrocarbon-degrading bacterium isolated from agricultural soil. Int J Syst Evol Microbiol 2012;62: 1581– 1586 [CrossRef]
    [Google Scholar]
  12. Latorre A, Moya A, Ayala FJ. Evolution of mitochondrial DNA in Drosophila subobscura. Proc Natl Acad Sci USA 1986;83: 8649– 8653 [CrossRef]
    [Google Scholar]
  13. Pascual J, Wüst PK, Geppert A, Foesel BU, Huber KJ et al. Novel isolates double the number of chemotrophic species and allow the first description of higher taxa in Acidobacteria subdivision 4. Syst Appl Microbiol 2015;38: 534– 544 [CrossRef]
    [Google Scholar]
  14. Pruesse E, Peplies J, Glöckner FO. Sina: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012;28: 1823– 1829 [CrossRef]
    [Google Scholar]
  15. Kozlov AM, Darriba D, Flouri T, Morel B, Stamatakis A. RAxML-NG: a fast, scalable, and user-friendly tool for maximum likelihood phylogenetic inference. bioRxiv 2018
    [Google Scholar]
  16. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30: 2725– 2729 [CrossRef]
    [Google Scholar]
  17. Nurk S, Bankevich A, Antipov D, Gurevich A, Korobeynikov A et al. Assembling genomes and mini-metagenomes from highly chimeric reads Annual International Conference on Research in Computational Molecular Biology Berlin, Heidelberg: Springer; 2013; pp 158– 170
    [Google Scholar]
  18. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015;25: 1043– 1055 [CrossRef]
    [Google Scholar]
  19. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018;68: 461– 466 [CrossRef]
    [Google Scholar]
  20. Kim M, Oh H-S, Park S-C, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014;64: 346– 351 [CrossRef]
    [Google Scholar]
  21. Na S-I, Kim YO, Yoon S-H, Ha S-M, Baek I et al. UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018;56: 280– 285 [CrossRef]
    [Google Scholar]
  22. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007;57: 81– 91 [CrossRef]
    [Google Scholar]
  23. Richter M, Rosselló-Mora R, Glöckner FO, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2015; pii: btv681
    [Google Scholar]
  24. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14: 60 [CrossRef]
    [Google Scholar]
  25. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009;106: 19126– 19131 [CrossRef]
    [Google Scholar]
  26. Chun J, Rainey FA. Integrating genomics into the taxonomy and systematics of the bacteria and archaea. Int J Syst Evol Microbiol 2014;64: 316– 324 [CrossRef]
    [Google Scholar]
  27. Manandhar P, Zhang G, Hu Y, Lama A, Gao F et al. Sphingomonas prati sp. nov., isolated from alpine meadow soil. Int J Syst Evol Microbiol 2016;66: 4269– 4275 [CrossRef]
    [Google Scholar]
  28. Manandhar P, Zhang G, Lama A, Liu F, Hu Y. Sphingomonas montana sp. nov., isolated from a soil sample from the Tanggula mountain in the Qinghai Tibetan Plateau. Antonie van Leeuwenhoek 2017;110: 1659– 1668 [CrossRef]
    [Google Scholar]
  29. Chen L, Chen W-F, Xu Z-L, Li W, Zhang X-Y et al. Sphingomonas oleivorans sp. nov., isolated from oil-contaminated soil. Int J Syst Evol Microbiol 2018;68: 3720– 3725 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003977
Loading
/content/journal/ijsem/10.1099/ijsem.0.003977
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error