1887

Abstract

An aerobic, Gram-stain-positive, mesophilic strain, W12, was isolated from soil of the Mt Zao volcano in Miyagi, Japan. Cells were filamentous, non-motile, and grew at 20–37 °C (optimally at 30 °C), at pH 5.0–7.0 (optimally at pH 6.0) and with <2 % (w/v) NaCl on 10-fold diluted Reasoner’s 2A (R2A) medium. Oval-shaped spores were formed on aerial mycelia. Strain W12 hydrolysed microcrystalline cellulose and xylan very weakly, and used -glucose as its sole carbon source. The major menaquinone was MK-9, and the major cellular fatty acids were C 2-OH, iso-C, summed feature 9 (10-methyl C and/or iso-Cω9) and anteiso-C. Cell-wall sugars were mannose and xylose, and cell-wall amino acids were -glutamic acid, glycine, -serine, -alanine, -alanine, β-alanine and -ornithine. Polar lipids were phosphatidylinositol, phosphatidylglycerol, diphosphatidylglycerol, an unidentified glycolipid and an unidentified phospholipid. Strain W12 has a genome of 7.42 Mb with 49.7 mol% G+C content. Nine copies of 16S rRNA genes with a maximum dissimilarity of 1.02 % and 13 biosynthetic gene clusters mainly coding for peptide products were predicted in the genome. Phylogenetic analysis based on both 16S rRNA gene and whole genome sequences indicated that strain W12 represents a novel species in the genus . The most closely related type strain was Uno16, with 16S rRNA gene sequence similarity and genomic average nucleotide identity of 98.37 % and 80.00 %, respectively. Herein, we propose the name sp. nov. for the type strain W12 (=NBRC 113551=BCRC 81169) in the bacterial class .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003975
2020-01-23
2020-02-28
Loading full text...

Full text loading...

References

  1. Cavaletti L, Monciardini P, Bamonte R, Schumann P, Rohde M et al. New lineage of filamentous, spore-forming, Gram-positive bacteria from soil. Appl Environ Microbiol 2006;72:4360–4369 [CrossRef]
    [Google Scholar]
  2. King CE, King GM. Description of Thermogemmatispora carboxidivorans sp. nov., a carbon-monoxide-oxidizing member of the class Ktedonobacteria isolated from a geothermally heated biofilm, and analysis of carbon monoxide oxidation by members of the class Ktedonobacteria. Int J Syst Evol Microbiol 2014;64:1244–1251 [CrossRef]
    [Google Scholar]
  3. Wang C-mei, Zheng Y, Sakai Y, Toyoda A, Minakuchi Y et al. Tengunoibacter tsumagoiensis gen. nov., sp. nov., Dictyobacter kobayashii sp. nov., Dictyobacter alpinus sp. nov., and description of Dictyobacteraceae fam. nov. within the order Ktedonobacterales isolated from Tengu-no-mugimeshi, a soil-like granular mass of micro-organisms, and emended descriptions of the genera Ktedonobacter and Dictyobacter. Int J Syst Evol Microbiol 2019;69:1910–1918 [CrossRef]
    [Google Scholar]
  4. Yabe S, Aiba Y, Sakai Y, Hazaka M, Yokota A. Thermosporothrix hazakensis gen. nov., sp. nov., isolated from compost, description of Thermosporotrichaceae fam. nov. within the class Ktedonobacteria Cavaletti et al. 2007 and emended description of the class Ktedonobacteria. Int J Syst Evol Microbiol 2010;60:1794–1801 [CrossRef]
    [Google Scholar]
  5. Yabe S, Aiba Y, Sakai Y, Hazaka M, Yokota A. Thermogemmatispora onikobensis gen. nov., sp. nov. and Thermogemmatispora foliorum sp. nov., isolated from fallen leaves on geothermal soils, and description of Thermogemmatisporaceae fam. nov. and Thermogemmatisporales ord. nov. within the class Ktedonobacteria. Int J Syst Evol Microbiol 2011;61:903–910 [CrossRef]
    [Google Scholar]
  6. Yabe S, Sakai Y, Abe K, Yokota A, Také A et al. Dictyobacter aurantiacus gen. nov., sp. nov., a member of the family Ktedonobacteraceae, isolated from soil, and emended description of the genus Thermosporothrix. Int J Syst Evol Microbiol 2017;67:2615–2621 [CrossRef]
    [Google Scholar]
  7. Yabe S, Sakai Y, Yokota A. Thermosporothrix narukonensis sp. nov., belonging to the class Ktedonobacteria, isolated from fallen leaves on geothermal soil, and emended description of the genus Thermosporothrix. Int J Syst Evol Microbiol 2016;66:2152–2157 [CrossRef]
    [Google Scholar]
  8. Zheng Y, Wang C-M, Sakai Y, Abe K, Yokota A et al. Thermogemmatispora aurantia sp. nov. and Thermogemmatispora argillosa sp. nov., within the class Ktedonobacteria, and emended description of the genus Thermogemmatispora. Int J Syst Evol Microbiol 2019;69:1744–1750 [CrossRef]
    [Google Scholar]
  9. Yan B, Guo X, Liu M, Huang Y. Ktedonosporobacter rubrisoli gen. nov., sp. nov., a novel representative of the class Ktedonobacteria, isolated from red soil, and proposal of Ktedonosporobacteraceae fam. nov. Int J Syst Evol Microbiol in press 2019;67: [CrossRef]
    [Google Scholar]
  10. Chang Y-juan, Land M, Hauser L, Chertkov O, Del Rio TG et al. Non-contiguous finished genome sequence and contextual data of the filamentous soil bacterium Ktedonobacter racemifer type strain (SOSP1-21T). Stand Genomic Sci 2011;5:97–111 [CrossRef]
    [Google Scholar]
  11. Komaki H, Hosoyama A, Yabe S, Yokota A, Uchino Y et al. Draft genome sequence of Thermogemmatispora onikobensis NBRC 111776T, an aerial mycelium- and spore-forming thermophilic bacterium belonging to the class Ktedonobacteria. Genome Announc 2016;4:e01156–01116 [CrossRef]
    [Google Scholar]
  12. Zheng Y, Saitou A, Wang C-M, Toyoda A, Minakuchi Y et al. Genome features and secondary metabolites biosynthetic potential of the class Ktedonobacteria. Front Microbiol 2019;10:893 [CrossRef]
    [Google Scholar]
  13. Jiang Z, Li P, Jiang D, Dai X, Zhang R et al. Microbial community structure and arsenic biogeochemistry in an acid vapor-formed spring in Tengchong geothermal area, China. PLoS One 2016;11:e0146331 [CrossRef]
    [Google Scholar]
  14. Northup DE, Melim LA, Spilde MN, Hathaway JJM, Garcia MG et al. Lava cave microbial communities within mats and secondary mineral deposits: implications for life detection on other planets. Astrobiology 2011;11:601–618 [CrossRef]
    [Google Scholar]
  15. Sáenz de Miera LE, Arroyo P, de Luis Calabuig E, Falagán J, Ansola G. High-throughput sequencing of 16S RNA genes of soil bacterial communities from a naturally occurring CO 2 gas vent. Int J Greenh Gas Con 2014;29:176–184 [CrossRef]
    [Google Scholar]
  16. Stres B, Sul WJ, Murovec B, Tiedje JM. Recently deglaciated high-altitude soils of the Himalaya: diverse environments, heterogenous bacterial communities and long-range dust inputs from the upper troposphere. PLoS One 2013;8:e76440 [CrossRef]
    [Google Scholar]
  17. Tebo BM, Davis RE, Anitori RP, Connell LB, Schiffman P et al. Microbial communities in dark oligotrophic volcanic ice cave ecosystems of MT. Erebus, Antarctica. Front Microbiol 2015;6:179 [CrossRef]
    [Google Scholar]
  18. Yabe S, Sakai Y, Abe K, Yokota A. Diversity of Ktedonobacteria with actinomycetes-like morphology in terrestrial environments. Microbes Environ 2017;32:61–70 [CrossRef]
    [Google Scholar]
  19. Park J-S, Kagaya N, Hashimoto J, Izumikawa M, Yabe S et al. Identification and biosynthesis of new acyloins from the thermophilic bacterium Thermosporothrix hazakensis SK20 - 1 T. ChemBioChem 2014;15:527–532 [CrossRef]
    [Google Scholar]
  20. Park JS, Yabe S, Shin-ya K, Nishiyama M, Kuzuyama T. New 2-(1'H-indole-3'-carbonyl)-thiazoles derived from the thermophilic bacterium Thermosporothrix hazakensis SK20-1(T)68 Tokyo: J Antibiot; 2015; pp60–62
    [Google Scholar]
  21. Xu B, Aitken EJ, Baker BP, Turner CA, Harvey JE et al. Genome mining, isolation, chemical synthesis and biological evaluation of a novel lanthipeptide, tikitericin, from the extremophilic microorganism Thermogemmatispora strain T81. Chem Sci 2018;9:7311–7317 [CrossRef]
    [Google Scholar]
  22. Yabe S, Wang C, Zheng Y, Sakai Y, Abe K et al. Formation of sporangiospores in Dictyobacter aurantiacus (class Ktedonobacteria in phylum Chloroflexi). J Gen Appl Microbiol in press 2019;65:
    [Google Scholar]
  23. Lane D.16S/23S rRNA sequencing In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics Chichester United Kingdom: John Wiley and Sons; 1991; pp115–175
    [Google Scholar]
  24. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef]
    [Google Scholar]
  25. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425
    [Google Scholar]
  26. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef]
    [Google Scholar]
  27. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef]
    [Google Scholar]
  28. Stackebrandt E, Geobel BM. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994;44:846–849 [CrossRef]
    [Google Scholar]
  29. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966;16:313–340 [CrossRef]
    [Google Scholar]
  30. Stott MB, Crowe MA, Mountain BW, Smirnova AV, Hou S et al. Isolation of novel bacteria, including a candidate division, from geothermal soils in New Zealand. Environ Microbiol 2008;10:2030–2041 [CrossRef]
    [Google Scholar]
  31. Larson CB, Crüsemann M, Moore BS. PCR-Independent method of transformation-associated recombination reveals the cosmomycin biosynthetic gene cluster in an ocean Streptomycete. J Nat Prod 2017;80:1200–1204 [CrossRef]
    [Google Scholar]
  32. Smibert RM, Krieg NL.Phenotypic characterization In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp607–654
    [Google Scholar]
  33. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977;100:221–230 [CrossRef]
    [Google Scholar]
  34. Schleifer KH, Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 1972;36:407–477 [CrossRef]
    [Google Scholar]
  35. Harper JJ, Davis GHG. Notes: two-dimensional thin-layer chromatography for amino acid analysis of bacterial cell walls. Int J Syst Bacteriol 1979;29:56–58 [CrossRef]
    [Google Scholar]
  36. Také A, Nakashima T, Inahashi Y, Shiomi K, Takahashi Y et al. Analyses of the cell-wall peptidoglycan structures in three genera Micromonospora, Catenuloplanes, and Couchioplanes belonging to the family Micromonosporaceae by derivatization with FDLA and PMP using LC/MS. J Gen Appl Microbiol 2016;62:199–205
    [Google Scholar]
  37. Hasegawa T, Takizawa M, Tanida S. A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 1983;29:319–322 [CrossRef]
    [Google Scholar]
  38. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990;13:128–130 [CrossRef]
    [Google Scholar]
  39. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990;66:199–202 [CrossRef]
    [Google Scholar]
  40. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015;25:1043–1055 [CrossRef]
    [Google Scholar]
  41. Tanizawa Y, Fujisawa T, Nakamura Y. DFAST: a flexible prokaryotic genome annotation pipeline for faster genome publication. Bioinformatics 2018;34:1037–1039 [CrossRef]
    [Google Scholar]
  42. Blin K, Wolf T, Chevrette MG, Lu X, Schwalen CJ et al. antiSMASH 4.0—improvements in chemistry prediction and gene cluster boundary identification. Nucleic Acids Res 2017;45:W36–W41 [CrossRef]
    [Google Scholar]
  43. Wang Y, Coleman-Derr D, Chen G, Gu YQ. OrthoVenn: a web server for genome wide comparison and annotation of orthologous clusters across multiple species. Nucleic Acids Res 2015;43:W78–W84 [CrossRef]
    [Google Scholar]
  44. Goris J, Klappenbach JA, Vandamme P, Coenye T, Konstantinidis KT et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007;57:81–91 [CrossRef]
    [Google Scholar]
  45. Chaudhari NM, Gupta VK, Dutta C. BPGA- an ultra-fast pan-genome analysis pipeline. Sci Rep 2016;6:24373 [CrossRef]
    [Google Scholar]
  46. Edgar RC. Muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004;32:1792–1797 [CrossRef]
    [Google Scholar]
  47. Jones DT, Taylor WR, Thornton JM. The rapid generation of mutation data matrices from protein sequences. Bioinformatics 1992;8:275–282 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003975
Loading
/content/journal/ijsem/10.1099/ijsem.0.003975
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error