1887

Abstract

A Gram-stain-positive, aerobic, non-motile and coccoid-shaped bacterium, designated XNB-1, was isolated from farmland soil in Taian, Shandong province, China. Strain XNB-1 contained iso-C and iso-C as the predominant fatty acids. The diagnostic diamino acid of the peptidoglycan was ornithine, and the interpeptide bridge was -Orn←Gly-Glu. The polar lipid profile of strain XNB-1 consisted of diphosphatidylglycerol, phosphatidylglycerol, an unidentified phosphoglycolipid and three unidentified phospholipids. The predominant menaquinone of strain XNB-1 was MK-8(H) and the DNA G+C content was 70.1 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain XNB-1 belonged to the genus , and shared the highest similarity with HKI 0125 (96.0 %), followed by EGI 80423 (95.5 %). Genome-based analysis of average nucleotide identity of strain XNB-1 with HKI 0125 and EGI 80423 yielded values of 73.1 and 73.3 %, respectively, while the digital DNA–DNA hybridization values were 19.5 and 19.9 %, respectively. On the basis of phenotypic, chemotaxonomic and phylogenetic data, strain XNB-1 is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is XNB-1 (=CCTCC AB 2019099=KCTC 49259).

Funding
This study was supported by the:
  • National Key R & D Program of China (Award 2017YFD0800702)
    • Principle Award Recipient: Qing Hong
  • National Natural Science Foundation of China (Award 31970102)
    • Principle Award Recipient: Qing Hong
  • National Natural Science Foundation of China (Award 31670112)
    • Principle Award Recipient: Qing Hong
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003972
2020-01-20
2024-12-08
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/3/1793.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003972&mimeType=html&fmt=ahah

References

  1. Groth I, Schumann P, Martin K, Schuetze B, Augsten K et al. Ornithinicoccus hortensis gen. nov., sp. nov., a soil actinomycete which contains l-ornithine. Int J Syst Bacteriol 1999; 49:1717–1724
    [Google Scholar]
  2. Zhang YG, Wang HF, Yang LL, Guo JW, Xiao M et al. Ornithinicoccus halotolerans sp. nov., and emended description of the genus Ornithinicoccus . Int J Syst Evol Microbiol 2016; 66:1894–1899
    [Google Scholar]
  3. Sambrook J, Russell DW. Molecular Cloning: A Laboratory Manual. Rv. ed Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 2001
    [Google Scholar]
  4. Lane DL. 16S/23S rRNA sequencing. In Stackebrandt ER, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics Wiley, Chichester: UK; 1991 pp 115–175
    [Google Scholar]
  5. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxone: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721
    [Google Scholar]
  6. Sudhir K, Glen S, Koichiro T. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2017; 33:1870–1874
    [Google Scholar]
  7. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 24:4876–4888
    [Google Scholar]
  8. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425
    [Google Scholar]
  9. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416
    [Google Scholar]
  10. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376
    [Google Scholar]
  11. Kimura MA. Simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120
    [Google Scholar]
  12. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791
    [Google Scholar]
  13. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 1994; 44:846–849
    [Google Scholar]
  14. Beveridge TJ, Lawrence JR, Murray RGE. Sampling and staining for light microscopy. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf GA. (editors) Methods for General and Molecular Microbiology, 3rd ed. Washington, DC: American Society for Microbiology; 2007 pp 19–33
    [Google Scholar]
  15. Breznak JA, Costilow RN. Physicochemical factors in growth. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp 137–154
    [Google Scholar]
  16. Jiang WK, MY L, Cui MD, Wang X, Wang H et al. Terrimonas soli sp. nov., isolated from farmland soil. Int J Syst Evol Microbiol 2018; 68:819–823
    [Google Scholar]
  17. Suzuki M, Nakagawa Y, Harayama S, Yamamoto S. Phylogenetic analysis and taxonomic study of marine Cytophaga-like bacteria: proposal for Tenacibaculum gen. nov. with Tenacibaculum maritimum comb. nov. and Tenacibaculum ovolyticum comb. nov., and description of Tenacibaculum mesophilum sp. nov. and Tenacibaculum amylolyticum sp. nov. Int J Syst Evol Microbiol 2001; 51:1639–1652
    [Google Scholar]
  18. Ebersole LL. Acid-fast stain procedures. In Isenberg HD. editor Clinical Microbiology Procedures Handbook Washington, DC: American Society for Microbiology; 1992 pp 3.5.1–3.5.3
    [Google Scholar]
  19. Zhang H, Zhang J, Song M, Cheng MG, YD W et al. Pedobacter nanyangensis sp. nov., isolated from herbicide-contaminated soil. Int J Syst Evol Microbiol 2015; 65:3517–3521
    [Google Scholar]
  20. Dong XZ, Cai MY. Determinative Manual for Routine Bacteriology Beijing: Scientific Press; 2001
    [Google Scholar]
  21. Breznak JA. Phenotypic characterization. Methods for General and Molecular Bacteriology Washington, DC: AmericanSociety for Microbiology; 1994 pp 607–654
    [Google Scholar]
  22. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230
    [Google Scholar]
  23. Groth I, Schumann P, Weiss N, Martin K, Rainey FA. Agrococcus jenensis gen. nov., sp. nov., a new genus of actinomycetes with diaminobutyric acid in the cell wall. Int J Syst Bacteriol 1996; 46:234–239
    [Google Scholar]
  24. Collins MD. Isoprenoid quinone analysis in classification and identification. In Goodfellow M, Minnikin DE. (editors) Chemical Methods in Bacterial Systematics London: Academic Press; 1985 pp 267–287
    [Google Scholar]
  25. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newslett 1990; 20:1–6
    [Google Scholar]
  26. Schleifer KH, Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 1972; 36:407–477
    [Google Scholar]
  27. Tang SK, Wang Y, Chen Y, Lou K, Cao LL. Zhihengliuella alba sp. nov., and emended description of the genus Zhihengliuella . Int J Syst Evol Microbiol 2009; 59:2025–2031
    [Google Scholar]
  28. Schumann P. Peptidoglycan structure. Methods Microbiol 2011; 38:101–129
    [Google Scholar]
  29. Delcher AL, Bratke KA, Powers EC, Salzberg SL. Identifying bacterial genes andendosymbiont DNA with glimmer. Bioinformatics 2007; 23:673–679
    [Google Scholar]
  30. Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M. KEGG for integration and interpretation of large-scale molecular datasets. Nucleic Acids Res 2012; 40:D109–D114
    [Google Scholar]
  31. Tatusov RL, Galperin MY, Natale DA, Koonin EV. The COG database: a toolfor genome-scale analysis of protein functions and evolution. NucleicAcids Res 2000; 28:33–36
    [Google Scholar]
  32. RQ L, Yu C, YR L, Lam TW, Yiu SM et al. SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 2009; 25:1966–1967
    [Google Scholar]
  33. Auch AF, von Jan M, Klenk HP, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134
    [Google Scholar]
  34. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91
    [Google Scholar]
  35. Adrio JL, Demain AL. Microbial enzymes: tools for biotechnological processes. Biomol Ther 2014; 4:117–139
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.003972
Loading
/content/journal/ijsem/10.1099/ijsem.0.003972
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error