1887

Abstract

A Gram-stain-negative, strictly aerobic, oval-shaped, non-motile bacterium with no flagella, designated strain SCR17, was isolated from a shrimp gill habitat in Tangyin hydrothermal field of Okinawa Trough. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain SCR17 formed a lineage within the family ‘’, and shared 16S rRNA gene sequence similarity of 93.2–96.2 % to the related genera and . Strain SCR17 was able to grow with 0–14 % (w/v) NaCl (optimum, 9–10 %). The sole respiratory quinone was ubiquinone-10. The major polar lipids of strain SCR17 comprised phosphatidylcholine (PC), phosphatidylglycerol (PG), phosphatidylethanolamine (PE), an unidentified aminolipid (AL), an unidentified phospholipid (PL) and an unidentified lipid (L). The predominant fatty acids (more than 10 % of the total fatty acids) were C ω7 or/and C ω6, anteiso-C , C and C cyclo 8 . The genomic DNA G+C content of strain SCR17 was 67.7 mol%. Based on polyphasic taxonomic analyses, strain SCR17 is considered to represent a novel species in a new genus of the family ‘’, for which the name gen. nov., sp. nov. is proposed. The type strain of is SCR17 (=JCM 33426=MCCC 1K03732). The discovery of a novel host-associated bacterium in hydrothermal fields provides an opportunity for the study of host–bacterial symbiosis in extreme environments.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003971
2020-01-16
2020-02-28
Loading full text...

Full text loading...

References

  1. Wang L, Yu M, Liu Y, Liu J, Wu Y et al. Comparative analyses of the bacterial community of hydrothermal deposits and seafloor sediments across Okinawa Trough. J Marine Syst 2018;180: 162– 172 [CrossRef]
    [Google Scholar]
  2. YH W, Cao Y, Wang CS, Wu M, Aharon O et al. Microbial community structure and nitrogenase gene diversity of sediment from a deep-sea hydrothermal vent field on the Southwest Indian Ridge. Acta Oceanol Sin 2014;33: 94– 104
    [Google Scholar]
  3. Yang Z, Xiao X, Zhang Y. Microbial diversity of sediments from an inactive hydrothermal vent field, Southwest Indian Ridge. Mar Life Sci Technol 2019;12: [CrossRef]
    [Google Scholar]
  4. Takai K, Komatsu T, Inagaki F, Horikoshi K. Distribution of archaea in a black smoker chimney structure. Appl Environ Microbiol 2001;67: 3618– 3629 [CrossRef]
    [Google Scholar]
  5. Cavanaugh CM, Gardiner SL, Jones ML, Jannasch HW, Waterbury JB. Prokaryotic cells in the hydrothermal vent tube worm Riftia pachyptila Jones: possible chemoautotrophic symbionts. Science 1981;213: 340– 342 [CrossRef]
    [Google Scholar]
  6. Cavanaugh CM, Levering PR, Maki JS, Mitchell R, Lidstrom ME. Symbiosis of methylotrophic bacteria and deep-sea mussels. Nature 1987;325: 346– 348 [CrossRef]
    [Google Scholar]
  7. Sun Q-lei, Zeng Z-gang, Chen S, Sun L. First comparative analysis of the community structures and carbon metabolic pathways of the bacteria associated with Alvinocaris longirostris in a hydrothermal vent of Okinawa Trough. PLoS One 2016;11: e0154359 [CrossRef]
    [Google Scholar]
  8. Zbinden M, Shillito B, Le Bris N, de Villardi de Montlaur C, Roussel E et al. New insigths on the metabolic diversity among the epibiotic microbial communitiy of the hydrothermal shrimp Rimicaris exoculata. J Exp Mar Bio Ecol 2008;359: 131– 140 [CrossRef]
    [Google Scholar]
  9. Tokuda G, Yamada A, Nakano K, Arita NO, Yamasaki H. Colonization of Sulfurovum sp. on the gill surfaces of Alvinocaris longirostris, a deep-sea hydrothermal vent shrimp. Mar Ecol 2008;29: 106– 114 [CrossRef]
    [Google Scholar]
  10. Garrity GM, Bell JA, Lilburn T. Family I. Rhodobacteraceae fam. nov In Brenner DJ, Krieg NR, Staley JT, Garrity GM. (editors) Bergey’s Manual of Systematic Bacteriology New York: Springer; 2005; p 161
    [Google Scholar]
  11. Garrity GM, Bell JA, Lilburn T. List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 2006;56: 1– 6 [CrossRef]
    [Google Scholar]
  12. Pujalte MJ, Lucena T, Ruvira MA, Arahal DR, Macian MC. The family Rhodobacteraceae In Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F. (editors) The Prokaryotes: Alphaproteobacteria and Betaproteobacteria Germany: Springer Verlag; 2014; pp 439– 512
    [Google Scholar]
  13. Feng T, Kim KH, Jeong SE, Kim W, Jeon CO. Aquicoccus porphyridii gen. nov., sp. nov., isolated from a small marine red alga, Porphyridium marinum. Int J Syst Evol Microbiol 2018;68: 283– 288 [CrossRef]
    [Google Scholar]
  14. Suzuki T, Muroga Y, Takahama M, Nishimura Y. Roseivivax halodurans gen. nov., sp. nov. and Roseivivax halotolerans sp. nov., aerobic bacteriochlorophyll-containing bacteria isolated from a saline lake. Int J Syst Bacteriol 1999;49: 629– 634 [CrossRef]
    [Google Scholar]
  15. YH W, Meng FX, Xu L, Zhang XQ, Wang CS et al. Roseivivax pacificus sp. nov., isolated from deep-sea sediment. Int J Syst Evol Microbiol 2013;63: 4574– 4579
    [Google Scholar]
  16. Ausubel F, Brent R, Kingston R, Moore D, Seidman J et al. Short Protocols in Molecular Biology: a Compendium of Methods from Current Protocols in Molecular Biology, 3rd ed. New York: Wiley; 1995
    [Google Scholar]
  17. Zhang Z, Yu T, Xu T, Zhang X-H. Aquimarina pacifica sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2014;64: 1991– 1997 [CrossRef]
    [Google Scholar]
  18. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67: 1613– 1617 [CrossRef]
    [Google Scholar]
  19. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007;23: 2947– 2948 [CrossRef]
    [Google Scholar]
  20. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4: 406– 425 [CrossRef]
    [Google Scholar]
  21. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17: 368– 376 [CrossRef]
    [Google Scholar]
  22. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971;20: 406– 416 [CrossRef]
    [Google Scholar]
  23. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018;35: 1547– 1549 [CrossRef]
    [Google Scholar]
  24. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16: 111– 120 [CrossRef]
    [Google Scholar]
  25. Beveridge TJ, Lawrence JR, Murray RG. Sampling and staining for light microscopy In Reddy CA, Beveridge TJ, Breznak TA, Marzluf G, Schmidt TM. (editors) Methods for General and Molecular Microbiology Washington, DC: American Society for Microbiology; 2007; pp 19– 33
    [Google Scholar]
  26. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparative systematics In Reddy CA, Beveridge TJ, Breznak JA, Marzluf G, Schmidt TM. (editors) Methods for General and Molecular Microbiology Washington, DC: American Society for Microbiology; 2007; pp 330– 393
    [Google Scholar]
  27. Yoon J-H, Lee K-C, Kho YH, Kang KH, Kim C-J et al. Halomonas alimentaria sp. nov., isolated from jeotgal, a traditional Korean fermented seafood. Int J Syst Evol Microbiol 2002;52: 123– 130 [CrossRef]
    [Google Scholar]
  28. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  29. Xie C-H, Yokota A. Phylogenetic analyses of Lampropedia hyalina based on the 16S rRNA gene sequence. J Gen Appl Microbiol 2003;49: 345– 349 [CrossRef]
    [Google Scholar]
  30. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2: 233– 241 [CrossRef]
    [Google Scholar]
  31. Collins MD, Shah HN. Fatty acid, menaquinone and polar lipid composition of Rothia dentocariosa. Arch Microbiol 1984;137: 247– 249 [CrossRef]
    [Google Scholar]
  32. Komagata K, Suzuki KI. 4 lipid and cell-wall analysis in bacterial Systematics. Methods Microbiol 1988;19: 161– 207
    [Google Scholar]
  33. Moore ERB, Arnscheidt A, Krüger A, Strömpl C, Mau M et al. Simplified protocols for the preparation of genomic DNA from bacterial cultures. Molecular Microbial Ecology Manual 1999;1: 1– 15
    [Google Scholar]
  34. Coil D, Jospin G, Darling AE. A5-miseq: an updated pipeline to assemble microbial genomes from illumina MiSeq data. Bioinformatics 2015;31: 587– 589 [CrossRef]
    [Google Scholar]
  35. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008;9: 75 [CrossRef]
    [Google Scholar]
  36. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 2017;110: 1281– 1286 [CrossRef]
    [Google Scholar]
  37. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14: 60 [CrossRef]
    [Google Scholar]
  38. Contreras-Moreira B, Vinuesa P. GET_HOMOLOGUES, a versatile software package for scalable and robust microbial pangenome analysis. Appl Environ Microbiol 2013;79: 7696– 7701 [CrossRef]
    [Google Scholar]
  39. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014;30: 1312– 1313 [CrossRef]
    [Google Scholar]
  40. Lin H, Yu M, Wang X, Zhang X-H. Comparative genomic analysis reveals the evolution and environmental adaptation strategies of vibrios. BMC Genomics 2018;19: 135 [CrossRef]
    [Google Scholar]
  41. Jung Y-T, Lee J-S, Yoon J-H. Roseivivax jejudonensis sp. nov., isolated from the junction between the ocean and a freshwater spring at Jeju Island, South Korea. Antonie van Leeuwenhoek 2014;106: 959– 967 [CrossRef]
    [Google Scholar]
  42. Park S, Kang S-J, Oh T-K, Yoon J-H. Roseivivax lentus sp. nov., isolated from a tidal flat sediment, and emended description of the genus Roseivivax Suzuki et al. 1999. Int J Syst Evol Microbiol 2010;60: 1113– 1117 [CrossRef]
    [Google Scholar]
  43. Dai X, Shi X, Gao X, Liu J, Zhang X-H et al. Roseivivax marinus sp. nov., isolated from deep water. Int J Syst Evol Microbiol 2014;64: 2540– 2544 [CrossRef]
    [Google Scholar]
  44. Chen M-H, Sheu S-Y, Chen CA, Wang J-T, Chen W-M. Roseivivax isoporae sp. nov., isolated from a reef-building coral, and emended description of the genus Roseivivax. Int J Syst Evol Microbiol 2012;62: 1259– 1264 [CrossRef]
    [Google Scholar]
  45. Xiao W, Wang Y-X, Liu J-H, Wang Z-G, Zhang X-X et al. Roseivivax sediminis sp. nov., a moderately halophilic bacterium isolated from salt mine sediment. Int J Syst Evol Microbiol 2012;62: 1890– 1895 [CrossRef]
    [Google Scholar]
  46. Montero-Calasanz MdelC, Göker M, Rohde M, Spröer C, Schumann P et al. Chryseobacterium hispalense sp. nov., a plant-growth-promoting bacterium isolated from a rainwater pond in an olive plant nursery, and emended descriptions of Chryseobacterium defluvii, Chryseobacterium indologenes, Chryseobacterium wanjuense and Chryseobacterium gregarium. Int J Syst Evol Microbiol 2013;63: 4386– 4395 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003971
Loading
/content/journal/ijsem/10.1099/ijsem.0.003971
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error