1887

Abstract

Taxonomic relationships between , and have long been debated. Results of previous analyses have shown that overall genome relatedness indices (such as average nucleotide identity and core nucleotide identity) between the type strains ATCC 393 and ATCC 15820 were 94.6 and 95.3 %, respectively, which are borderline for species definition. However, the digital DNA‒DNA hybridization value was 57.3 %, which was clearly lower than the species delineation threshold of 70 %, and hence raised the possibility that could be reclassified into two species. To re-evaluate the taxonomic relationship of these taxa, multilocus sequence analysis (MLSA) based on the concatenated five housekeeping gene (, , , and ) sequences, phylogenomic and core genome multilocus sequence typing analyses, gene presence and absence profiles using pan-genome analysis, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) profiling analysis, cellular fatty acid compositions, and phenotype analysis were carried out. The results of phenotypic characterization, MLSA, whole-genome sequence-based analyses and MALDI-TOF MS profiling justified an independent species designation for the strains, and supported an emended the description of the name of (ex Kuznetsov 1956) Dicks . 1996, with ATCC 15820 (=DSM 20178=BCRC 17942) as the type strain.

Funding
This study was supported by the:
  • , Ministry of Economic Affairs, http://dx.doi.org/10.13039/501100004725, (Award 109-EC-17-A-22-0525)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003969
2020-05-18
2020-06-04
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/10.1099/ijsem.0.003969/ijsem003969.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003969&mimeType=html&fmt=ahah

References

  1. Hansen PA, Lessel EF. Lactobacillus casei (Orla-Jensen) comb. nov. Int J Syst Bacteriol 1971; 21:69–71 [CrossRef]
    [Google Scholar]
  2. Collins MD, Phillips BA, Zanoni P. Deoxyribonucleic acid homology studies of Lactobacillus casei, Lactobacillus paracasei sp. nov., subsp. paracasei and subsp. tolerans, and Lactobacillus rhamnosus sp. nov., comb. nov. Int J Syst Bacteriol 1989; 39:105–108 [CrossRef]
    [Google Scholar]
  3. Dellaglio F, Dicks LMT, Du Toit M, Torriani S. Designation of ATCC 334 in place of ATCC 393 (NCDO 161) as the neotype strain of Lactobacillus casei subsp. casei and rejection of the name Lactobacillus paracasei (Collins et al., 1989). Int J Syst Bacteriol 1991; 41:340–342 [CrossRef]
    [Google Scholar]
  4. Dicks LM, Du Plessis EM, Dellaglio F, Lauer E. Reclassification of Lactobacillus casei subsp. casei ATCC 393 and Lactobacillus rhamnosus ATCC 15820 as Lactobacillus zeae nom. rev., designation of ATCC 334 as the neotype of L. casei subsp. casei, and rejection of the name Lactobacillus paracasei. Int J Syst Bacteriol 1996; 46:337–340 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  5. Mills CK, Lessel EF. Lactobacterium zeae Kuznetsov, a later subjective synonym of Lactobacillus casei (Orla-Jensen) Hansen and Lessel. Int J Syst Bacteriol 1973; 23:430–432 [CrossRef]
    [Google Scholar]
  6. Lapage SP, Sneath PHA, Lessel EF, Skerman VBD, Seeliger HPR et al. Bacterial Code, 1990 Revision. International Code of Nomenclature of Bacteria Washington, DC: ASM Press; 1992
    [Google Scholar]
  7. Dellaglio F, Felis GE, Torriani S. The status of the species Lactobacillus casei (Orla-Jensen 1916) Hansen and Lessel 1971 and Lactobacillus paracasei Collins et al. 1989. Request for an opinion. Int J Syst Evol Microbiol 2002; 52:285–287 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  8. Judicial Commission of the International Committee on Systematics of Bacteria The type strain of Lactobacillus casei is ATCC 393, ATCC 334 cannot serve as the type because it represents a different taxon, the name Lactobacillus paracasei and its subspecies names are not rejected and the revival of the name 'Lactobacillus zeae' contravenes Rules 51b (1) and (2) of the International Code of Nomenclature of Bacteria. Opinion 82. Int J Syst Evol Microbiol 2008; 58:1764–1765 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  9. Huang CH, Liou JS, Lee AY, Tseng M, Miyashita M et al. Polyphasic characterization of a novel species in the Lactobacillus casei group from cow manure of Taiwan: Description of L. chiayiensis sp. nov. Syst Appl Microbiol 2018; 41:270–278 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  10. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  11. Chun J, Rainey FA. Integrating genomics into the taxonomy and systematics of the bacteria and archaea. Int J Syst Evol Microbiol 2014; 64:316–324 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  12. Rosselló-Móra R, Amann R. Past and future species definitions for bacteria and archaea. Syst Appl Microbiol 2015; 38:209–216 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  13. Whitman WB. Modest proposals to expand the type material for naming of prokaryotes. Int J Syst Evol Microbiol 2016; 66:2108–2112 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  14. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  15. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  16. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  17. Wittouck S, Wuyts S, Meehan CJ, van Noort V, Lebeer S. A genome-based species taxonomy of the Lactobacillus genus complex.. mSystems 2019; 4:e00264–19 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  18. Huang CH, Lee FL. Development of novel species-specific primers for species identification of the Lactobacillus casei group based on RAPD fingerprints. J Sci Food Agric 2009; 89:1831–1837
    [Google Scholar]
  19. Huang CH, Chang MT, Huang L, Chu WS. The dnaJ gene as a molecular discriminator to differentiate among species and strain within the Lactobacillus casei group. Mol Cell Probes 2015; 29:479–484 [CrossRef]
    [Google Scholar]
  20. Huang CH, Lee FL. The dnaK gene as a molecular marker for the classification and discrimination of the Lactobacillus casei group. Antonie Van Leeuwenhoek 2011; 99:319–327 [CrossRef]
    [Google Scholar]
  21. Naser SM, Dawyndt P, Hoste B, Gevers D, Vandemeulebroecke K et al. Identification of lactobacilli by pheS and rpoA gene sequence analyses. Int J Syst Evol Microbiol 2007; 57:2777–2789 [CrossRef]
    [Google Scholar]
  22. Huang CH, SW L, Huang L, Watanabe K. Identification and classification for the Lactobacillus casei group. Front Microbiol 1974; 2018:9
    [Google Scholar]
  23. Huang CH, Chang MT, Huang L. Use of highly variable gene (yycH) as DNA marker to resolve interspecific relationships within the Lactobacillus casei group and a target for developing novel species-specific PCR primers. Eur Food Res Technol 2014; 239:719–724 [CrossRef]
    [Google Scholar]
  24. Thompson J, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [CrossRef]
    [Google Scholar]
  25. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [CrossRef]
    [Google Scholar]
  26. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425
    [Google Scholar]
  27. Rzhetsky A, Nei M. A simple method for estimating and testing minimum-evolution trees. Mol Biol Evol 1992; 9:945–967
    [Google Scholar]
  28. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [CrossRef]
    [Google Scholar]
  29. Chor B, Hendy MD, Snir S. Maximum likelihood Jukes-Cantor triplets: analytic solutions. Mol Biol Evol 2006; 23:626–632 [CrossRef]
    [Google Scholar]
  30. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [CrossRef]
    [Google Scholar]
  31. Li R, Li Y, Kristiansen K, Wang J. SOAP: short oligonucleotide alignment program. Bioinformatics 2008; 24:713–714 [CrossRef]
    [Google Scholar]
  32. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [CrossRef]
    [Google Scholar]
  33. Wuyts S, Wittouck S, De Boeck I, Allonsius CN, Pasolli E et al. Large-scale phylogenomics of the Lactobacillus casei group highlights taxonomic inconsistencies and reveals novel clade-associated features. mSystems 2017; 2:e00061–17 [CrossRef]
    [Google Scholar]
  34. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [CrossRef]
    [Google Scholar]
  35. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [CrossRef]
    [Google Scholar]
  36. Liu YY, Lin JW, Chen CC. The Cano-eMLST program: an approach for the calculation of canonical extended multi-locus sequence typing, making comparison of genetic differences among bunches of bacterial strains. Microorganisms 2019; 7:98 [CrossRef]
    [Google Scholar]
  37. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [CrossRef]
    [Google Scholar]
  38. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015; 31:3691–3693 [CrossRef]
    [Google Scholar]
  39. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215:403–410 [CrossRef]
    [Google Scholar]
  40. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [CrossRef]
    [Google Scholar]
  41. Tanigawa K, Kawabata H, Watanabe K. Identification and typing of Lactococcus lactis by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Appl Environ Microbiol 2010; 76:4055–4062 [CrossRef]
    [Google Scholar]
  42. Yanokura E, Oki K, Makino H, Modesto M, Pot B et al. Subspeciation of Bifidobacterium longum by multilocus approaches and amplified fragment length polymorphism: Description of B. longum subsp. suillum subsp. nov., isolated from the faeces of piglets. Syst Appl Microbiol 2015; 38:305–314 [CrossRef]
    [Google Scholar]
  43. Kudo Y, Oki K, Watanabe K. Lactobacillus delbrueckii subsp. sunkii subsp. nov., isolated from sunki, a traditional Japanese pickle. Int J Syst Evol Microbiol 2012; 62:2643–2649 [CrossRef]
    [Google Scholar]
  44. Chern LL, Stackebrandt E, Lee SF, Lee FL, Chen JK et al. Chitinibacter tainanensis gen. nov., sp. nov., a chitin-degrading aerobe from soil in Taiwan. Int J Syst Evol Microbiol 2004; 54:1387–1391 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003969
Loading
/content/journal/ijsem/10.1099/ijsem.0.003969
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error