1887

Abstract

We describe a new multidrug resistant species that was isolated from patients with type 2 diabetes in Vietnam. Strain BD 01 was cultivated in 2017 from a blood sample of a patient suffering from bacteremia. Strain VP 7442 was isolated in 2018 from a pleural fluid sample of a patient who had presented with lung abscess and pleural effusion. Both strains are aerobic, Gram-negative, non-motile and non-spore-forming. The 16S rRNA gene sequences of both strains are 100 % similar and share a highest 16S sequence identity with MRP-15 of 97.42 %. Their predominant fatty acid is iso-C (73.8 % for strain BD 01 and 79.8 % for strain VP 7442). The draft genome sizes of strains BD 01 and VP 7442 are 6 308 408 and 6 308 579 bp, respectively. They are resistant to beta-lactams, aminoglycosides, fluoroquinolones, metronidazole, fosfomycin, vancomycin and macrolides, and exhibit 20 and 18 antimicrobial resistance-related genes, respectively. Using the multiphasic taxonogenomic approach, we propose that strains BD 01 (=CSUR P9622=VTCC 70981) and VP 7442 (=CSUR P9623=VTCC 70982) represent a new species, for which we propose the name sp. nov. Strain BD 01 was chosen as type strain of sp. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003968
2020-01-16
2020-02-28
Loading full text...

Full text loading...

References

  1. Glavina Del Rio T, Abt B, Spring S, Lapidus A, Nolan M et al. Complete genome sequence of Chitinophaga pinensis type strain (UQM 2034). Stand Genomic Sci 2010;2: 87– 95 [CrossRef]
    [Google Scholar]
  2. Kämpfer P, Young C-C, Sridhar KR, Arun AB, Lai WA et al. Transfer of [Flexibacter] sancti, [Flexibacter] filiformis, [Flexibacter] japonensis and [Cytophaga] arvensicola to the genus Chitinophaga and description of Chitinophaga skermanii sp. nov. Int J Syst Evol Microbiol 2006;56: 2223– 2228 [CrossRef]
    [Google Scholar]
  3. Proenca DN, Nobre MF, Morais PV. Chitinophaga costaii sp. nov., an endophyte of Pinus pinaster, and emended description of Chitinophaga niabensis. Int J Syst Evol Microbiol 2014;64: 1237– 1243 [CrossRef]
    [Google Scholar]
  4. Jin D, Kong X, Wang J, Sun J, Yu X et al. Chitinophaga caeni sp. nov., isolated from activated sludge. Int J Syst Evol Microbiol 2018;68: 2209– 2213 [CrossRef]
    [Google Scholar]
  5. Li N, Chen T, Cheng D, Xu X-J, He J. Chitinophaga sedimenti sp. nov., isolated from sediment. Int J Syst Evol Microbiol 2017;67: 3485– 3489 [CrossRef]
    [Google Scholar]
  6. Wang Q, Cheng C, He L-Y, Huang Z, Sheng X-F. Chitinophaga jiangningensis sp. nov., a mineral-weathering bacterium. Int J Syst Evol Microbiol 2014;64: 260– 265 [CrossRef]
    [Google Scholar]
  7. Crémet L, Bemer P, Zambon O, Reynaud A, Caroff N et al. Chitinophaga terrae bacteremia in human. Emerg Infect Dis 2009;15: 1134– 1135 [CrossRef]
    [Google Scholar]
  8. Ramasamy D, Mishra AK, Lagier J-C, Padhmanabhan R, Rossi M et al. A polyphasic strategy incorporating genomic data for the taxonomic description of novel bacterial species. Int J Syst Evol Microbiol 2014;64: 384– 391 [CrossRef]
    [Google Scholar]
  9. Seng P, Drancourt M, Gouriet F, La Scola B, Fournier P-E et al. Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Infect Dis 2009;49: 543– 551 [CrossRef]
    [Google Scholar]
  10. Kim O-S, Cho Y-J, Lee K, Yoon S-H, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62: 716– 721 [CrossRef]
    [Google Scholar]
  11. Meier-Kolthoff JP, Hahnke RL, Petersen J, Scheuner C, Michael V et al. Complete genome sequence of DSM 30083T, the type strain (U5/41T) of Escherichia coli, and a proposal for delineating subspecies in microbial taxonomy. Stand Genomic Sci 2014;9: 2 [CrossRef]
    [Google Scholar]
  12. Edgar RC. Muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004;32: 1792– 1797 [CrossRef]
    [Google Scholar]
  13. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014;30: 1312– 1313 [CrossRef]
    [Google Scholar]
  14. Goloboff PA, Farris JS, Nixon KC. TNT, a free program for phylogenetic analysis. Cladistics 2008;24: 774– 786 [CrossRef]
    [Google Scholar]
  15. Pattengale ND, Alipour M, Bininda-Emonds ORP, Moret BME, Stamatakis A. How many bootstrap replicates are necessary?. Journal of Computational Biology 2010;17: 337– 354 [CrossRef]
    [Google Scholar]
  16. Pfenninger M, Posada D. Phylogeographic history of the land snail CANDIDULA UNIFASCIATA (HELICELLINAE, Stylommatophora): fragmentation, corridor migration, and secondary contact. Evolution 2002;56: 1776– 1788 [CrossRef]
    [Google Scholar]
  17. Anani H, Abdallah RA, Khoder M, Fontanini A, Mailhe M et al. Colibacter massiliensis gen. nov. sp. nov., a novel Gram-stain-positive anaerobic diplococcal bacterium, isolated from the human left colon. Sci Rep 2019;9: 17199 [CrossRef]
    [Google Scholar]
  18. Han S-I, Lee H-J, Whang K-S. Chitinophaga polysaccharea sp. nov., an exopolysaccharide-producing bacterium isolated from the rhizoplane of Dioscorea japonica. Int J Syst Evol Microbiol 2014;64: 55– 59 [CrossRef]
    [Google Scholar]
  19. Dione N, Sankar SA, Lagier J-C, Khelaifia S, Michele C et al. Genome sequence and description of Anaerosalibacter massiliensis sp. nov. New Microbes and New Infections 2016;10: 66– 76 [CrossRef]
    [Google Scholar]
  20. Sasser M. Bacterial identification by gas chromatographic analysis of fatty acids methyl esters (GC-FAME). 6
  21. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. Journal of Computational Biology 2012;19: 455– 477 [CrossRef]
    [Google Scholar]
  22. Boetzer M, Henkel CV, Jansen HJ, Butler D, Pirovano W. Scaffolding pre-assembled contigs using SSPACE. Bioinformatics 2011;27: 578– 579 [CrossRef]
    [Google Scholar]
  23. Boetzer M, Pirovano W. Toward almost closed genomes with GapFiller. Genome Biol 2012;13: R56 [CrossRef]
    [Google Scholar]
  24. Darling AE, Tritt A, Eisen JA, Facciotti MT, Metrics MA. Mauve assembly metrics. Bioinformatics 2011;27: 2756– 2757 [CrossRef]
    [Google Scholar]
  25. Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 2010;11: [CrossRef]
    [Google Scholar]
  26. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014;30: 2068– 2069 [CrossRef]
    [Google Scholar]
  27. Anani H, Hasni I, Zgheib R, Fadlane A, Raoult D et al. Whole-Genome Sequence of French Clinical Peptoniphilus catoniae Strain P8546. Microbiol Resour Announc 2019;8: [CrossRef]
    [Google Scholar]
  28. Anani H, Khodor M, Raoult D, Fournier P-E. Whole-Genome Sequence of French Clinical Olivibacter jilunii Strain P8502. Microbiology Resource Announcements. 2019;8
  29. Anani H, Raoult D, Fournier P-E. Whole-Genome Sequence of Haloimpatiens lingqiaonensis Strain P8956. Microbiol Resour Announc 2019;8: [CrossRef]
    [Google Scholar]
  30. Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P et al. Artemis: sequence visualization and annotation. Bioinformatics 2000;16: 944– 945 [CrossRef]
    [Google Scholar]
  31. Carver T, Harris SR, Berriman M, Parkhill J, McQuillan JA. Artemis: an integrated platform for visualization and analysis of high-throughput sequence-based experimental data. Bioinformatics 2012;28: 464– 469 [CrossRef]
    [Google Scholar]
  32. Gupta SK, Padmanabhan BR, Diene SM, Lopez-Rojas R, Kempf M et al. ARG-ANNOT, a new bioinformatic tool to discover antibiotic resistance genes in bacterial genomes. Antimicrob Agents Chemother 2014;58: 212– 220 [CrossRef]
    [Google Scholar]
  33. Cosentino S, Voldby Larsen M, Møller Aarestrup F, Lund O. PathogenFinder - Distinguishing Friend from Foe Using Bacterial Whole Genome Sequence Data. PLoS One 2013;8: e77302 [CrossRef]
    [Google Scholar]
  34. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14: 60 [CrossRef]
    [Google Scholar]
  35. Yoon S-H, Ha S-min, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017;110: 1281– 1286 [CrossRef]
    [Google Scholar]
  36. Anani H, Abou Abdallah R, Chelkha N, Fontanini A, Ricaboni D et al. Draft genome and description of Merdibacter massiliensis gen.nov., sp. nov., a new bacterium genus isolated from the human ileum. Sci Rep 2019;9: [CrossRef]
    [Google Scholar]
  37. Kim MK, Jung H-Y. Chitinophaga terrae sp. nov., isolated from soil. Int J Syst Evol Microbiol 2007;57: 1721– 1724 [CrossRef]
    [Google Scholar]
  38. Lv Y-Y, Wang J, You J, Qiu L-H, You J. Chitinophaga dinghuensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 2015;65: 4816– 4822 [CrossRef]
    [Google Scholar]
  39. Lee H-G, An D-S, Im W-T, Liu Q-M, Na J-R et al. Chitinophaga ginsengisegetis sp. nov. and Chitinophaga ginsengisoli sp. nov., isolated from soil of a ginseng field in South Korea. Int J Syst Evol Microbiol 2007;57: 1396– 1401 [CrossRef]
    [Google Scholar]
  40. Yasir M, Chung EJ, Song GC, Bibi F, Jeon CO et al. Chitinophaga eiseniae sp. nov., isolated from vermicompost. Int J Syst Evol Microbiol 2011;61: 2373– 2378 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003968
Loading
/content/journal/ijsem/10.1099/ijsem.0.003968
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error