1887

Abstract

A Gram-stain-positive, strictly aerobic, polar flagellated, short rod-shaped bacterium, designated DFW100M-13, was isolated from gut of the larva of collected from Wanju-gun, South Korea. The growth range of NaCl concentration was 0–3 % (w/v) (optimally 0 % (w/v)), the temperature range for growth was 10–40 °C (optimally 28–30 °C), and the pH range for growth was pH 6.0–9.0 (optimally pH 7.0–8.0). Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain DFW100M-13 had a high sequence similarity to members of the genus , having the highest similarity with DSM 19459 (97.7 %), CHO1 (97.1 %), and SK 18 (97.0 %), and formed a distinct lineage with DSM 19459 within the genus . A phylogenetic tree based on house-keeping genes also showed the result similar to the 16S rRNA gene-based tree. The main respiratory quinone (>10 %) was MK-11, MK-12 and MK-10, and the predominant cellular fatty acids (>10 %) were -C, -C and -C. The polar lipids were composed of diphosphatidylglycerol, phosphatidylglycerol, an inidentified glycolipid and an unidnetified lipid. The peptidoglycan type was supposed to be the B2 with amino acids -alanine, -glutamic acid, glycine, -homoserine and -ornithine. The genomic DNA G+C content was 68.0 mol%. Based on the polyphasic taxonomic data, strain DFW100M-13 is considered to represent a novel species, for which the name sp. nov. is proposed. The type strain is DFW100M-13 (=KACC 19323=NBRC 113120).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003967
2020-02-13
2024-12-09
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/4/2226.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003967&mimeType=html&fmt=ahah

References

  1. Orla-Jensen S. The Lactic Acid Bacteria Copenhagen: Høst & Sons; 1919
    [Google Scholar]
  2. Takeuchi M, Hatano K. Union of the genera Microbacterium Orla-Jensen and Aureobacterium Collins et al. in a redefined genus Microbacterium. Int J Syst Bacteriol 1998; 48:739–747 [View Article]
    [Google Scholar]
  3. Krishnamurthi S, Bhattacharya A, Schumann P, Dastager SG, Tang SK et al. Microbacterium immunditiarum sp. nov., an actinobacterium isolated from landfill surface soil, and emended description of the genus Microbacterium . Int J Syst Evol Microbiol 2012; 62:2187–2193 [View Article]
    [Google Scholar]
  4. Alves A, Correia A, Igual JM, Trujillo ME. Microbacterium endophyticum sp. nov. and Microbacterium halimionae sp. nov., endophytes isolated from the salt-marsh plant Halimione portulacoides and emended description of the genus Microbacterium . Syst Appl Microbiol 2014; 37:474–479 [View Article]
    [Google Scholar]
  5. Fidalgo C, Riesco R, Henriques I, Trujillo ME, Alves A. Microbacterium diaminobutyricum sp. nov., isolated from Halimione portulacoides, which contains diaminobutyric acid in its cell wall, and emended description of the genus Microbacterium . Int J Syst Evol Microbiol 2016; 66:4492–4500 [View Article]
    [Google Scholar]
  6. Suzuki K, Hamada M, Genus I, Orla-Jensen M. 179AL emend. Takeuchi and Hatano 1998b, 744VP. In Goodfellow M, Kämpfer P, Busse HJ, Trujillo ME, Suzuki K. (editors) Bergey’s Manual of Systematic Bacteriology 2012 Athens: 1919 pp 814–852
    [Google Scholar]
  7. Meng YC, Liu HC, Yang LL, Kang YQ, Zhou YG et al. Microbacterium sorbitolivorans sp. nov., a novel member of Microbacteriaceae isolated from fermentation bed in pigpen. Int J Syst Evol Microbiol 2016; 66:5556–5561 [View Article]
    [Google Scholar]
  8. Kageyama A, Takahashi Y, Ōmura S. Microbacterium deminutum sp. nov., Microbacterium pumilum sp. nov. and Microbacterium aoyamense sp. nov. Int J Syst Evol Microbiol 2006; 56:2113–2117 [View Article]
    [Google Scholar]
  9. Park MJ, Kim MK, Kim HB, Im WT, Yi TH et al. Microbacterium ginsengisoli sp. nov., a -glucosidase-producing bacterium isolated from soil of a ginseng field. Int J Syst Evol Microbiol 2008; 58:429–433 [View Article]
    [Google Scholar]
  10. Kim Y-J, Kim MK, Bui TPN, Kim H-B, Srinivasan S et al. Microbacterium ginsengiterrae sp. nov., a -glucosidase-producing bacterium isolated from soil of a ginseng field. Int J Syst Evol Microbiol 2010; 60:2808–2812 [View Article]
    [Google Scholar]
  11. Lee J-S, Lee KC, Park YH. Microbacterium koreense sp. nov., from sea water in the South Sea of Korea. Int J Syst Evol Microbiol 2006; 56:423–427 [View Article]
    [Google Scholar]
  12. Kim KK, Lee KC, Oh H-M, Lee J-S. Microbacterium aquimaris sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2008; 58:1616–1620 [View Article]
    [Google Scholar]
  13. Zhang L, Xi L, Ruan J, Huang Y. Microbacterium marinum sp. nov., isolated from deep-sea water. Syst Appl Microbiol 2012; 35:81–85 [View Article]
    [Google Scholar]
  14. Zlamala C, Schumann P, Kämpfer P, Valens M, Rosselló-Mora R et al. Microbacterium aerolatum sp. nov., isolated from the air in the 'Virgilkapelle' in Vienna. Int J Syst Evol Microbiol 2002; 52:1229–1234 [View Article]
    [Google Scholar]
  15. Anandham R, Tamura T, Hamada M, Weon HY, Kim SJ et al. Microbacterium suwonense sp. nov., isolated from cow dung. J Microbiol. 2011; 49:852–856 [View Article]
    [Google Scholar]
  16. Kämpfer P, Rekha PD, Schumann P, Arun AB, Young C-C et al. Microbacterium arthrosphaerae sp. nov., isolated from the faeces of the pill millipede Arthrosphaera magna Attems. Int J Syst Evol Microbiol 2011; 61:1334–1337 [View Article]
    [Google Scholar]
  17. Chen X, Li GD, Li QY, Xu FJ, Jiang CL et al. Microbacterium faecale sp. nov., isolated from the faeces of Columba livia . Int J Syst Evol Microbiol 2016; 66:4445–4450 [View Article]
    [Google Scholar]
  18. Madhaiyan M, Poonguzhali S, Lee JS, Lee KC, Saravanan VS et al. Microbacterium azadirachtae sp. nov., a plant-growth-promoting actinobacterium isolated from the rhizoplane of neem seedlings. Int J Syst Evol Microbiol 2010; 60:1687–1692 [View Article]
    [Google Scholar]
  19. Gao M, Wang M, Zhang YC, Zou XI, Xie LQ et al. Microbacterium neimengense sp. nov., isolated from the rhizosphere of maize. Int J Syst Evol Microbiol 2013; 63:236–240 [View Article]
    [Google Scholar]
  20. Yan ZF, Lin P, Won KH, Yang JE, Li CT et al. Microbacterium hibisci sp. nov., isolated from rhizosphere of mugunghwa (Hibiscus syriacus L.). Int J Syst Evol Microbiol 2017; 67:3564–3569 [View Article]
    [Google Scholar]
  21. Vaz M I, Lopes AR, Falsen E, Schumann P, Nunes OC et al. Microbacterium luticocti sp. nov., isolated from sewage sludge compost. Int J Syst Evol Microbiol 2008; 58:1700–1704 [View Article]
    [Google Scholar]
  22. Vaz-Moreira I, Lopes AR, Faria C, Spröer C, Schumann P et al. Microbacterium invictum sp. nov., isolated from homemade compost. Int J Syst Evol Microbiol 2009; 59:2036–2041 [View Article]
    [Google Scholar]
  23. Shivaji S, Bhadra B, Rao RS, Chaturvedi P, Pindi PK et al. Microbacterium indicum sp. nov., isolated from a deep-sea sediment sample from the Chagos Trench, Indian Ocean. Int J Syst Evol Microbiol 2007; 57:1819–1822 [View Article]
    [Google Scholar]
  24. Mawlankar RR, Dastager SG, Srinivasan K, Verma A, Thorat MN et al. Microbacterium enclense sp. nov., isolated from sediment sample. Int J Syst Evol Microbiol 2015; 65:2064–2070 [View Article]
    [Google Scholar]
  25. Felske A, Rheims H, Wolterink A, Stackebrandt E, Akkermans AD. Ribosome analysis reveals prominent activity of an uncultured member of the class Actinobacteria in grassland soils. Microbiology 1997; 143:2983–2989 [View Article]
    [Google Scholar]
  26. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article]
    [Google Scholar]
  27. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article]
    [Google Scholar]
  28. Pruesse E, Peplies J, Glöckner FO. Sina: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012; 28:1823–1829 [View Article]
    [Google Scholar]
  29. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article]
    [Google Scholar]
  30. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22:4673–4680 [View Article]
    [Google Scholar]
  31. Gregersen T. Rapid method for distinction of gram-negative from gram-positive bacteria. European J Appl Microbiol Biotechnol 1978; 5:123–127 [View Article]
    [Google Scholar]
  32. Smibert R, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp 607–654
    [Google Scholar]
  33. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  34. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  35. Hamada M, Yamamura H, Komukai C, Tamura T, Suzuki K-ichiro et al. Luteimicrobium album sp. nov., a novel actinobacterium isolated from a lichen collected in Japan, and emended description of the genus Luteimicrobium . J Antibiot 2012; 65:427–431 [View Article]
    [Google Scholar]
  36. Hamada M, Tamura T, Yamamura H, Suzuki K-i, Hayakawa M et al. Lysinimicrobium mangrovi gen. nov., sp. nov., an actinobacterium isolated from the rhizosphere of a mangrove. Int J Syst Evol Microbiol 2012; 62:1731–1735 [View Article]
    [Google Scholar]
  37. Cho SJ, Lee SS. Microbacterium rhizosphaerae sp. nov., isolated from a Ginseng field, South Korea. Antonie van Leeuwenhoek 2017; 110:11–18 [View Article]
    [Google Scholar]
  38. Evtushenko LI, Takeuchi M. The family Microbacteriaceae . In Dworkin M, Falkow S, Roenberg E, Schleifer KH, Stackebrandt E. (editors) The Prokaryotes: a Handbook on the Biology of Bacteria, 3rd ed. New York: Springer; 2016 pp 1020–1098
    [Google Scholar]
  39. Chin CS, Alexander DH, Marks P, Klammer AA, Drake J et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 2013; 10:563–569 [View Article]
    [Google Scholar]
  40. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. Ncbi prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article]
    [Google Scholar]
  41. Auch AF, von Jan M, Klenk H-P, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134 [View Article]
    [Google Scholar]
  42. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article]
    [Google Scholar]
  43. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.003967
Loading
/content/journal/ijsem/10.1099/ijsem.0.003967
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error