1887

Abstract

Strain CPCC 203383, isolated from the surface-sterilized fruit of (Lindl.) G. Don, was taxonomically characterized based on a polyphasic investigation. It had the highest 16S rRNA gene sequence similarities with DSM 21552 (97.2 %) and DSM 17687 (97.2%). Phylogenetic analysis based on 16S rRNA gene sequences showed that the strain formed a distinct phyletic branch within the genus and the whole genome sequence data analyses supported that strain CPCC 203383 was phylogenetically related to the species. The isolate shared a range of phenotypic patterns reported for members of the genus , but also had a range of cultural, physiological and biochemical characteristics that separated it from related species. The menaquinone was MK-8(H). The polar lipid profile consisted of diphosphatidylglycerol (DPG), phosphatidylglycerol (PG), phosphatidylinositol (PI) and unidentified lipids (ULs). The major fatty acids (>5 %) were -C, -C, -C 9- C, -C and -C. The cell wall peptidoglycan contains -ornithine as diagnostic diamino acid and an interpeptide bridge consisting of -Orn←-Ala←Gly←-Asp. The combined genotypic and phenotypic data indicated that the isolate represents a novel species of the genus for which the name sp. nov. is proposed, with CPCC 203383(=NBRC 113522=KCTC 49200) as the type strain. The DNA G+C composition is 72.3 mol%. The availability of new data allows for an emended description of the genus .

Funding
This study was supported by the:
  • National Natural Science Foundation of China (Award 81373452 and 81621064)
    • Principle Award Recipient: Li-yan Yu
  • National Natural Science Foundation of China (Award 31400045)
    • Principle Award Recipient: Xiao-Mei Fang
  • National Infrastructure of Microbial Resources (Award NIMR-2019-3)
    • Principle Award Recipient: Li-yan Yu
  • CAMS Initiative for Innovative Medicine (Award 2016-I2M-3-014 and 2016-I2M-2-003)
  • Key Technologies Research and Development Program (Award 2017YFD0201401)
    • Principle Award Recipient: Li-yan Yu
  • National Major Science and Technology Projects of China (CN) (Award 2018ZX09711001-007-001)
    • Principle Award Recipient: Li-yan Yu
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003957
2020-01-14
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/3/1691.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003957&mimeType=html&fmt=ahah

References

  1. Groth I, Schumann P, Weiss N, Schuetze B, Augsten K et al. Ornithinimicrobium humiphilum gen. nov., sp. nov., a novel soil actinomycete with L-ornithine in the peptidoglycan. Int J Syst Evol Microbiol 2001; 51:81–87 [View Article]
    [Google Scholar]
  2. Nouioui I, Carro L, García-López M, Meier-Kolthoff JP, Woyke T et al. Genome-based taxonomic classification of the phylum actinobacteria [J]. Front Microbiol 2018; 22:2007
    [Google Scholar]
  3. Kämpfer P, Glaeser SP, Schäfer J, Lodders N, Martin K et al. Ornithinimicrobium murale sp. nov., isolated from an indoor wall colonized by moulds. Int J Syst Evol Microbiol 2013; 63:119–123 [View Article]
    [Google Scholar]
  4. Liu LZ, Liu Y, Chen Z, Liu HC, Zhou YG et al. Ornithinimicrobium tianjinense sp. nov., isolated from a recirculating aquaculture system. Int J Syst Evol Microbiol 2013; 63:4489–4494 [View Article]
    [Google Scholar]
  5. Liu XY, Wang BJ, Jiang CY, Liu SJ. Ornithinimicrobium pekingense sp. nov., isolated from activated sludge. Int J Syst Evol Microbiol 2008; 58:116–119 [View Article]
    [Google Scholar]
  6. Ramaprasad EVV, Ramana CV, Sasikala C. Ornithinimicrobium algicola sp. nov., a marine actinobacterium isolated from the green alga of the genus Ulva . Int J Syst Evol Microbiol 2015; 65:4627–4631 [View Article]
    [Google Scholar]
  7. Zhang LY, Ming H, Meng XL, Fang BZ, Jiao JY et al. Ornithinimicrobium cavernae sp. nov., an actinobacterium isolated from a karst cave. Antonie van Leeuwenhoek 2019; 112:179–186 [View Article]
    [Google Scholar]
  8. Fang XM, Yan D, Bai JL, Su J, Liu HY et al. Ornithinimicrobium flavum sp. nov., isolated from the leaf of Paris polyphylla . Int J Syst Evol Microbiol 2017; 67:4541–4545 [View Article]
    [Google Scholar]
  9. Groth I, Schumann P, Weiss N, Schuetze B, Augsten K et al. Genus IX. Ornithinimicrobium. Bergey’s Manual of Systematic Bacteriology New York: Springer; 2012 pp 777–780
    [Google Scholar]
  10. Mayilraj S, Saha P, Suresh K, Saini HS. Ornithinimicrobium kibberense sp. nov., isolated from the Indian Himalayas. Int J Syst Evol Microbiol 2006; 56:1657–1661 [View Article]
    [Google Scholar]
  11. Coombs JT, Franco CMM. Isolation and identification of actinobacteria from surface-sterilized wheat roots. Appl Environ Microbiol 2003; 69:5603–5608 [View Article]
    [Google Scholar]
  12. Gu Q, Luo H, Zheng W, Liu Z, Huang Y. Pseudonocardia oroxyli sp. nov., a novel actinomycete isolated from surface-sterilized Oroxylum indicum root. Int J Syst Evol Microbiol 2006; 56:2193–2197 [View Article]
    [Google Scholar]
  13. WJ L, Xu P, Schumann P, Zhang YQ, Pukall R et al. Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia . Int J Syst Bacteriol 2007; 57:1424–1428
    [Google Scholar]
  14. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article]
    [Google Scholar]
  15. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article]
    [Google Scholar]
  16. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article]
    [Google Scholar]
  17. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article]
    [Google Scholar]
  18. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  19. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article]
    [Google Scholar]
  20. Tamura K, Nei M, Kumar S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci USA 2004; 101:11030–11035 [View Article]
    [Google Scholar]
  21. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article]
    [Google Scholar]
  22. Isik K, Chun J, Hah YC, Goodfellow M. Nocardia salmonicida nom. rev., a fish pathogen. Int J Syst Bacteriol 1999; 49:833–837 [View Article]
    [Google Scholar]
  23. Suzuki M, Nakagawa Y, Harayama S, Yamamoto S. Phylogenetic analysis and taxonomic study of marine Cytophaga-like bacteria: proposal for Tenacibaculum gen. nov. with Tenacibaculum maritimum comb. nov. and Tenacibaculum ovolyticum comb. nov., and description of Tenacibaculum mesophilum sp. nov. and Tenacibaculum amylolyticum sp. nov. Int J Syst Evol Microbiol 2001; 51:1639–1652 [View Article]
    [Google Scholar]
  24. Barker J, Maxted H. Observations on the growth and movement of Acinetobacter on semi-solid media. J Med Microbiol 1975; 8:443–446 [View Article]
    [Google Scholar]
  25. Xu P et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family 'Oxalobacteraceae' isolated from China. Int J Syst Evol Microbiol 2005; 55:1149–1153 [View Article]
    [Google Scholar]
  26. Williams ST, Goodfellow M, Alderson G, Wellington EMH, Sneath PHA et al. Numerical classification of Streptomyces and related genera. Microbiology 1983; 129:1743–1813 [View Article]
    [Google Scholar]
  27. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Applmicrobiol 1974; 28:226–231
    [Google Scholar]
  28. Také A, Nakashima T, Inahashi Y, Shiomi K, Takahashi Y et al. Analyses of the cell-wall peptidoglycan structures in three genera micromonospora, catenuloplanes, and couchioplanes belonging to the family micromonosporaceae by derivatization with FDLA and PMP using LC/MS. J Gen Appl Microbiol 2016; 62:199–205
    [Google Scholar]
  29. Nozawa Y, Sakai N, Arai K, Kawasaki Y, Harada K-ichi. Reliable and sensitive analysis of amino acids in the peptidoglycan of actinomycetes using the advanced Marfey's method. J Microbiol Methods 2007; 70:306–311 [View Article]
    [Google Scholar]
  30. Embley TM, Goodfellow M, Minnikin DE, O'Donnell AG. Lipid and wall amino acid composition in the classification of Rothia dentocariosa . Zentralbl Bakteriol Mikrobiol Hyg 1984; 257:285–295 [View Article]
    [Google Scholar]
  31. Collins MD, Goodfellow M, Minnikin DE. Fatty acid, isoprenoid quinone and polar lipid composition in the classification of Curtobacterium and related taxa. Microbiology 1980; 118:29–37 [View Article]
    [Google Scholar]
  32. Groth I, Schumann P, Rainey FA, Martin K, Schuetze B et al. Demetria terragena gen. nov., sp. nov., a new genus of actinomycetes isolated from compost soil. Int J Syst Bacteriol 1997; 47:1129–1133 [View Article]
    [Google Scholar]
  33. Kellogg JA, Bankert DA, Withers GS, Sweimler W, Kiehn TE et al. Application of the Sherlock mycobacteria identification system using high-performance liquid chromatography in a clinical laboratory. J Clin Microbiol 2001; 39:964–970 [View Article]
    [Google Scholar]
  34. Marmur J. A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 1961; 3:208–IN1 [View Article]
    [Google Scholar]
  35. Li R, Li Y, Kristiansen K, Wang J. Soap: short oligonucleotide alignment program. Bioinformatics 2008; 24:713–714 [View Article]
    [Google Scholar]
  36. Li R, Zhu H, Ruan J, Qian W, Fang X et al. De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 2010; 20:265–272 [View Article]
    [Google Scholar]
  37. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article]
    [Google Scholar]
  38. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article]
    [Google Scholar]
  39. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article]
    [Google Scholar]
  40. Goris J, Klappenbach JA, Vandamme P, Coenye T, Konstantinidis KT et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003957
Loading
/content/journal/ijsem/10.1099/ijsem.0.003957
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error