1887

Abstract

A comparative taxonomic study of , , and was carried out using different approaches, 16S rRNA gene sequence analysis, multilocus sequence analysis (MLSA), phylogenomic analysis based on the comparison of the core genome, orthologous average nucleotide identity (OrthoANI), Genome-to-Genome Distance Calculator (GGDC), synteny plots and polar lipid profile (PLP). The MLSA study, using the five concatenated housekeeping genes , , , and ′, and the phylogenomic analysis based on 1347 core translated gene sequences obtained from their genomes showed that JCM 9100, JCM 10247, JCM 13916 and JCM 13561 formed a robust cluster, clearly separated from the rest of species of the genus . The OrthoANI and digital DDH values, calculated by the GGDC, showed percentages among JCM 9100, JCM 10247, JCM 13916 and JCM 13561 that ranged from 98.1 to 97.5 %, and 84.0 to 78.0 %, respectively, while these values among those strains and the type strains of their most related species of were equal or lower than 90.8 and 41.2 %, respectively. Moreover, degree of synteny across the four genomes was very high, especially between the genomes of JCM 13561 and JCM 13916. In addition, the PLP is quite similar among the four strains studied, showing a common pattern typical of the neutrophilic species of the genus . Overall, these data show that , , and constitute a single species. Thus, the latter three should be considered as later, heterotypic synonyms of based on the rules for priority of names. We propose an emended description of , including the features of , and .

Funding
This study was supported by the:
  • Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía (Award BIO-213)
    • Principle Award Recipient: Antonio Ventosa
  • Ministerio de Ciencia, Innovación y Universidades (Award CGL2017-83385-P)
    • Principle Award Recipient: Antonio Ventosa
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003956
2020-01-23
2024-09-11
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/3/1698.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003956&mimeType=html&fmt=ahah

References

  1. McGenity TJ, Grant WD. Transfer of Halobacterium saccharovorum, Halobacterium sodomense, Halobacterium trapanicum NRC 34021 and Halobacterium lacusprofundi to the genus Halorubrum gen. nov., as Halorubrum saccharovorum comb. nov., Halorubrum sodomense comb. nov., Halorubrum trapanicum comb. nov., and Halorubrum lacusprofundi comb. nov. Syst Appl Microbiol 1995; 18:237–243 [View Article]
    [Google Scholar]
  2. Kamekura M, Dyall-Smith ML. Taxonomy of the family Halobacteriaceae and the description of two new genera Halorubrobacterium and Natrialba . J Gen Appl Microbiol 1995; 41:333–350 [View Article]
    [Google Scholar]
  3. Oren A, Ventosa A. A proposal for the transfer of Halorubrobacterium distributum and Halorubrobacterium coriense to the genus Halorubrum as Halorubrum distributum comb. nov. and Halorubrum coriense comb. nov., respectively. Int J Syst Bacteriol 1996; 46:1180 [View Article]
    [Google Scholar]
  4. Oren A, Arahal DR, Ventosa A. Emended descriptions of genera of the family Halobacteriaceae . Int J Syst Evol Microbiol 2009; 59:637–642 [View Article]
    [Google Scholar]
  5. Gupta RS, Naushad S, Baker S. Phylogenomic analyses and molecular signatures for the class Halobacteria and its two major clades: a proposal for division of the class Halobacteria into an emended order Halobacteriales and two new orders, Haloferacales ord. nov. and Natrialbales ord. nov., containing the novel families Haloferacaceae fam. nov. and Natrialbaceae fam. nov. Int J Syst Evol Microbiol 2015; 65:1050–1069 [View Article]
    [Google Scholar]
  6. Gupta RS, Naushad S, Fabros R, Adeolu M. A phylogenomic reappraisal of family-level divisions within the class Halobacteria: proposal to divide the order Halobacteriales into the families Halobacteriaceae, Haloarculaceae fam. nov., and Halococcaceae fam. nov., and the order Haloferacales into the families, Haloferacaceae and Halorubraceae fam nov. Antonie van Leeuwenhoek 2016; 109:565–587 [View Article]
    [Google Scholar]
  7. Parte AC. LPSN - List of Prokaryotic names with Standing in Nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol 2018; 68:1825–1829 [View Article]
    [Google Scholar]
  8. Amoozegar MA, Siroosi M, Atashgahi S, Smidt H, Ventosa A. Systematics of haloarchaea and biotechnological potential of their hydrolytic enzymes. Microbiology 2017; 163:623–645 [View Article]
    [Google Scholar]
  9. Boucher Y, Douady CJ, Sharma AK, Kamekura M, Doolittle WF. Intragenomic heterogeneity and intergenomic recombination among haloarchaeal rRNA genes. J Bacteriol 2004; 186:3980–3990 [View Article]
    [Google Scholar]
  10. López-López A, Benlloch S, Bonfá M, Rodríguez-Valera F, Mira A. Intragenomic 16S rDNA divergence in Haloarcula marismortui is an adaptation to different temperatures. J Mol Evol 2007; 65:687–696 [View Article]
    [Google Scholar]
  11. Sun D-L, Jiang X, Wu QL, Zhou N-Y. Intragenomic heterogeneity of 16S rRNA genes causes overestimation of prokaryotic diversity. Appl Environ Microbiol 2013; 79:5962–5969 [View Article]
    [Google Scholar]
  12. Papke RT, Corral P, Ram-Mohan N, de la Haba RR, Sánchez-Porro C et al. Horizontal gene transfer, dispersal and haloarchaeal speciation. Life 2015; 5:1405–1426 [View Article]
    [Google Scholar]
  13. Minegishi H, Kamekura M, Itoh T, Echigo A, Usami R et al. Further refinement of the phylogeny of the Halobacteriaceae based on the full-length RNA polymerase subunit B' (rpoB') gene. Int J Syst Evol Microbiol 2010; 60:2398–2408 [View Article]
    [Google Scholar]
  14. Papke RT, White E, Reddy P, Kamekura M et al. A multilocus sequence analysis (MLSA) approach to Halobacteriales phylogeny and taxonomy. Int J Syst Evol Microbiol 2011; 61:2984–2995
    [Google Scholar]
  15. de la Haba RR, Corral P, Sánchez-Porro C, Infante-Domínguez C, Makkay AM et al. Genotypic and lipid analyses of strains from the archaeal genus Halorubrum reveal insights into their taxonomy, divergence, and population structure. Front Microbiol 2018; 9:512 [View Article]
    [Google Scholar]
  16. Corral P, de la Haba RR, Infante-Domínguez C, Sánchez-Porro C, Amoozegar MA et al. Halorubrum chaoviator Mancinelli et al. 2009 is a later, heterotypic synonym of Halorubrum ezzemoulense Kharroub et al. 2006. Emended description of Halorubrum ezzemoulense Kharroub et al. 2006. Int J Syst Evol Microbiol 2018; 68:3657–3665 [View Article]
    [Google Scholar]
  17. Zvyagintseva IS, Tarasov AL. Extreme halophilic bacteria from saline soils. Microbiology 1987; 56:664–669
    [Google Scholar]
  18. Ventosa A, Gutiérrez MC, Kamekura M, Zvyagintseva IS, Oren A. Taxonomic study of Halorubrum distributum and proposal of Halorubrum terrestre sp. nov. Int J Syst Evol Microbiol 2004; 54:389–392 [View Article]
    [Google Scholar]
  19. Xu X-W, Wu Y-H, Zhang H-B, Wu M. Halorubrum arcis sp. nov., an extremely halophilic archaeon isolated from a saline lake on the Qinghai-Tibet Plateau, China. Int J Syst Evol Microbiol 2007; 57:1069–1072 [View Article]
    [Google Scholar]
  20. Cui H-L, Lin Z-Y, Dong Y, Zhou P-J, Liu S-J et al. Halorubrum litoreum sp. nov., an extremely halophilic archaeon from a solar saltern. Int J Syst Evol Microbiol 2007; 57:2204–2206 [View Article]
    [Google Scholar]
  21. Parker CT, Tindall BJ, Garrity GM. International Code of Nomenclature of Prokaryotes. Int J Syst Evol Microbiol 2019; 69:S1–S111 [View Article]
    [Google Scholar]
  22. Ludwig W, Strunk O, Westram R, Richter L, Meier H et al. ARB: a software environment for sequence data. Nucleic Acids Res 2004; 32:1363–1371 [View Article]
    [Google Scholar]
  23. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article]
    [Google Scholar]
  24. Kim M, Oh H-S, Park S-C, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article]
    [Google Scholar]
  25. Meier-Kolthoff JP, Göker M, Spröer C, Klenk H-P. When should a DDH experiment be mandatory in microbial taxonomy?. Arch Microbiol 2013; 195:413–418 [View Article]
    [Google Scholar]
  26. Jukes TH, Cantor CR. Evolution of protein molecules. In Munro HN. editor Mammalian Protein Metabolism 3 New York: Academic Press; 1969 pp 21–132
    [Google Scholar]
  27. Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 2010; 59:307–321 [View Article]
    [Google Scholar]
  28. Tavaré S. Some probabilistic and statistical problems in the analysis of DNA sequences. Lectures Math Life Sci 1986; 17:57–86
    [Google Scholar]
  29. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article]
    [Google Scholar]
  30. Rodriguez-R LM, Konstantinidis KT. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. PeerJ Preprints 2016:e1900v1
    [Google Scholar]
  31. Edgar RC. Muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2002; 94:1792–1797
    [Google Scholar]
  32. Price MN, Dehal PS, Arkin AP. FastTree 2 – approximately maximum-likelihood trees for large alignments. PLoS One 2010; 5:e9490 [View Article]
    [Google Scholar]
  33. Jones DT, Taylor WR, Thornton JM. The rapid generation of mutation data matrices from protein sequences. Bioinformatics 1992; 8:275–282 [View Article]
    [Google Scholar]
  34. Shimodaira H, Hasegawa M. Multiple comparisons of Log-Likelihoods with applications to phylogenetic inference. Mol Biol Evol 1999; 16:1114–1116 [View Article]
    [Google Scholar]
  35. Yoon S-H, Ha S-min, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article]
    [Google Scholar]
  36. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article]
    [Google Scholar]
  37. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article]
    [Google Scholar]
  38. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article]
    [Google Scholar]
  39. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article]
    [Google Scholar]
  40. Auch AF, von Jan M, Klenk H-P, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134 [View Article]
    [Google Scholar]
  41. Blom J, Kreis J, Spänig S, Juhre T, Bertelli C et al. EDGAR 2.0: an enhanced software platform for comparative gene content analyses. Nucleic Acids Res 2016; 44:W22–W28 [View Article]
    [Google Scholar]
  42. Meier-Kolthoff JP, Klenk H-P, Göker M. Taxonomic use of DNA G+C content and DNA-DNA hybridization in the genomic age. Int J Syst Evol Microbiol 2014; 64:352–356 [View Article]
    [Google Scholar]
  43. Corral P, de la Haba RR, Sánchez-Porro C, Amoozegar MA, Papke RT et al. Halorubrum persicum sp. nov., an extremely halophilic archaeon isolated from sediment of a hypersaline lake. Int J Syst Evol Microbiol 2015; 65:1770–1778 [View Article]
    [Google Scholar]
  44. Corral P, de la Haba RR, Sánchez-Porro C, Amoozegar MA, Thane Papke R et al. Halorubrum halodurans sp. nov., an extremely halophilic archaeon isolated from a hypersaline lake. Int J Syst Evol Microbiol 2016; 66:435–444 [View Article]
    [Google Scholar]
  45. Angelini R, Corral P, Lopalco P, Ventosa A, Corcelli A. Novel ether lipid cardiolipins in archaeal membranes of extreme haloalkaliphiles. Biochim Biophys Acta 1818; 2012:1365–1373
    [Google Scholar]
  46. Corcelli A, Lobasso S. Characterization of lipids of halophilic archaea. Methods Microbiol 2006; 35:585–613
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.003956
Loading
/content/journal/ijsem/10.1099/ijsem.0.003956
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error