1887

Abstract

The genus (Family: ; Order: Class: Alphaproteobacteria) comprises facultative intracellular Gram-negative, haemotropic, slow-growing, vector-borne bacteria. Wild rodents and their fleas harbor a great diversity of species and strains of the genus , including several zoonotic ones. This genetic diversity coupled with a fastidious nature of the organism results in a taxonomic challenge that has led to a massive collection of uncharacterized strains. Here, we report the genomic and phenotypic characterization of two strains, members of the genus (namely Tel Aviv and OE 1–1), isolated from rats and fleas, respectively. Scanning electron microscopy revealed rod-shaped bacteria with polar pili, lengths ranging from 1.0 to 2.0 µm and widths ranging from 0.3 to 0.6 µm. OE 1–1 and Tel Aviv strains contained one single chromosome of 2.16 and 2.23 Mbp and one plasmid of 29.0 and 41.5 Kbp, with average DNA G+C contents of 38.16 and 38.47 mol%, respectively. These strains presented an average nucleotide identity (ANI) of 89.9 %. was found to be the closest phylogenetic relative of both strains (ANI=90.9–93.6 %). The major fatty acids identified in both strains were Cω7, C and C. They differ from in their C and C compositions. Both strains are strictly capnophilic and their biochemical profiles resembled those of species of the genus with validly published names, whereas differences in arylamidase activities partially assisted in their speciation. Genomic and phenotypic differences demonstrate that OE 1–1 and Tel Aviv strains represent novel individual species, closely related to , for which we propose the names sp. nov. and sp. nov.

Keyword(s): diversity , fleas , rats and rodents
Funding
This study was supported by the:
  • SJTU-HUJI Joint Seed Funding (Award Not applicable)
    • Principle Award Recipient: Congli Yuan
  • Israel Science Foundation (Award 688/17)
    • Principle Award Recipient: Shimon Harrus
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003952
2020-02-25
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/3/1656.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003952&mimeType=html&fmt=ahah

References

  1. Birtles RJ, Harrison TG, Fry NK, Saunders NA, Taylor AG. Taxonomic considerations of Bartonella bacilliformis based on phylogenetic and phenotypic characteristics. FEMS Microbiol Lett 1991; 67:187–191 [View Article]
    [Google Scholar]
  2. Brenner DJ, O'Connor SP, Winkler HH, Steigerwalt AG. Proposals to unify the genera Bartonella and Rochalimaea, with descriptions of Bartonella quintana comb. nov., Bartonella vinsonii comb. nov., Bartonella henselae comb. nov., and Bartonella elizabethae comb. nov., and to remove the family Bartonellaceae from the order Rickettsiales . Int J Syst Bacteriol 1993; 43:777–786 [View Article]
    [Google Scholar]
  3. Birtles RJ, Harrison TG, Saunders NA, Molyneux DH. Proposals to unify the genera Grahamella and Bartonella, with descriptions of Bartonella talpae comb, nov., Bartonella peromysci comb. nov., and three new species, Bartonella grahamii sp. nov., Bartonella taylorii sp. nov., and Bartonella doshiae sp. nov. Int J Syst Bacteriol 1995; 45:1–8 [View Article]
    [Google Scholar]
  4. Okaro U, Addisu A, Casanas B, Anderson B. Bartonella species, an emerging cause of blood-culture-negative endocarditis. Clin Microbiol Rev 2017; 30:709–746 [View Article]
    [Google Scholar]
  5. Bai Y, Kosoy MY, Cully JF, Bala T, Ray C et al. Acquisition of nonspecific Bartonella strains by the northern grasshopper mouse (Onychomys leucogaster). FEMS Microbiol Ecol 2007; 61:438–448 [View Article]
    [Google Scholar]
  6. Bai Y, Calisher CH, Kosoy MY, Root JJ, Doty JB. Persistent infection or successive reinfection of deer mice with Bartonella vinsonii subsp. arupensis . Appl Environ Microbiol 2011; 77:1728–1731 [View Article]
    [Google Scholar]
  7. Gutiérrez R, Krasnov B, Morick D, Gottlieb Y, Khokhlova IS et al. Bartonella infection in rodents and their flea ectoparasites: an overview. Vector Borne Zoonotic Dis 2015; 15:27–39 [View Article]
    [Google Scholar]
  8. Brinkerhoff RJ, Kabeya H, Inoue K, Bai Y, Maruyama S. Detection of multiple Bartonella species in digestive and reproductive tissues of fleas collected from sympatric mammals. Isme J 2010; 4:955–958 [View Article]
    [Google Scholar]
  9. Morick D, Krasnov BR, Khokhlova IS, Gottlieb Y, Harrus S. Transmission dynamics of Bartonella sp. strain oe 1-1 in Sundevall's jirds (Meriones crassus). Appl Environ Microbiol 2013; 79:1258–1264 [View Article]
    [Google Scholar]
  10. Tsai Y-L, Chang C-C, Chuang S-T, Chomel BB. Bartonella species and their ectoparasites: selective host adaptation or strain selection between the vector and the mammalian host?. Comp Immunol Microbiol Infect Dis 2011; 34:299–314 [View Article]
    [Google Scholar]
  11. Deng H, Le Rhun D, Buffet J-PR, Cotté V, Read A et al. Strategies of exploitation of mammalian reservoirs by Bartonella species. Vet Res 2012; 43:15 [View Article]
    [Google Scholar]
  12. Kešnerová L, Moritz R, Engel P. Bartonella apis sp. nov., a honey bee gut symbiont of the class Alphaproteobacteria . Int J Syst Evol Microbiol 2016; 66:414–421 [View Article]
    [Google Scholar]
  13. Kosoy M, Hayman DTS, Chan K-S. Bartonella bacteria in nature: where does population variability end and a species start?. Infection, Genetics and Evolution 2012; 12:894–904 [View Article]
    [Google Scholar]
  14. Harms A, Dehio C. Intruders below the radar: molecular pathogenesis of Bartonella spp. Clin Microbiol Rev 2012; 25:42–78 [View Article]
    [Google Scholar]
  15. Chomel BB, Boulouis H-J, Breitschwerdt EB, Kasten RW, Vayssier-Taussat M et al. Ecological fitness and strategies of adaptation of Bartonella species to their hosts and vectors. Vet Res 2009; 40:29 [View Article]
    [Google Scholar]
  16. Boulouis H-J, Chao-chin C, Henn JB, Kasten RW, Chomel BB. Factors associated with the rapid emergence of zoonotic Bartonella infections. Vet Res 2005; 36:383–410 [View Article]
    [Google Scholar]
  17. Harrus S, Bar-Gal GK, Golan A, Elazari-Volcani R, Kosoy MY et al. Isolation and genetic characterization of a Bartonella strain closely related to Bartonella tribocorum and Bartonella elizabethae in Israeli commensal rats. Am J Trop Med Hyg 2009; 81:55–58 [View Article]
    [Google Scholar]
  18. Inoue K, Maruyama S, Kabeya H, Hagiya K, Izumi Y et al. Exotic small mammals as potential reservoirs of zoonotic Bartonella spp. Emerg Infect Dis 2009; 15:526–532 [View Article]
    [Google Scholar]
  19. Bai Y, Kosoy MY, Peruski LF, Lerdthusnee K, Richardson JH. Prevalence and genetic heterogeneity of Bartonella strains cultured from rodents from 17 provinces in Thailand. Am J Trop Med Hyg 2009; 81:811–816 [View Article]
    [Google Scholar]
  20. Paziewska A, Harris PD, Zwolińska L, Bajer A, Siński E. Recombination within and between species of the alpha proteobacterium Bartonella infecting rodents. Microb Ecol 2011; 61:134–145 [View Article]
    [Google Scholar]
  21. Kosoy M, McKee C, Albayrak L, Fofanov Y. Genotyping of Bartonella bacteria and their animal hosts: current status and perspectives. Parasitology 2018; 145:543–562 [View Article]
    [Google Scholar]
  22. Gutiérrez R, Cohen C, Flatau R, Marcos-Hadad E, Garrido M et al. Untangling the knots: Co-infection and diversity of Bartonella from wild gerbils and their associated fleas. Mol Ecol 2018; 27:47874807 [View Article]
    [Google Scholar]
  23. Morick D, Baneth G, Avidor B, Kosoy MY, Mumcuoglu KY et al. Detection of Bartonella spp. in wild rodents in Israel using HRM real-time PCR. Vet Microbiol 2009; 139:293–297 [View Article]
    [Google Scholar]
  24. Hayman DTS, McDonald KD, Kosoy MY. Evolutionary history of rat-borne Bartonella: the importance of commensal rats in the dissemination of bacterial infections globally. Ecology and evolution 2013; 3:3195–3203
    [Google Scholar]
  25. Gundi VAKB, Kosoy MY, Myint KSA, Shrestha SK, Shrestha MP et al. Prevalence and genetic diversity of Bartonella species detected in different tissues of small mammals in Nepal. Appl Environ Microbiol 2010; 76:8247–8254 [View Article]
    [Google Scholar]
  26. Ellis BA, Regnery RL, Beati L, Bacellar F, Rood M et al. Rats of the genus Rattus are reservoir hosts for pathogenic Bartonella species: an old world origin for a new world disease?. J Infect Dis 1999; 180:220–224 [View Article]
    [Google Scholar]
  27. Bai Y, Kabeya H, Breiman RF, Chowdhury MA, Sheff KW et al. Bartonella strains in small mammals from Dhaka, Bangladesh, related to Bartonella in America and Europe. Am J Trop Med Hyg 2007; 77:567–570 [View Article]
    [Google Scholar]
  28. Kandelaki G, Malania L, Bai Y, Chakvetadze N, Katsitadze G et al. Human lymphadenopathy caused by ratborne Bartonella, Tbilisi, Georgia. Emerg Infect Dis 2016; 22:544–546 [View Article]
    [Google Scholar]
  29. Marciano O, Gutiérrez R, Morick D, King R, Nachum-Biala Y et al. Detection of Bartonella spp. in wild carnivores, hyraxes, hedgehog and rodents from Israel. Parasitology 2016; 143:1232–1242 [View Article]
    [Google Scholar]
  30. Morick D, Krasnov BR, Khokhlova IS, Gottlieb Y, Harrus S. Investigation of Bartonella acquisition and transmission in Xenopsylla ramesis fleas (Siphonaptera: Pulicidae). Mol Ecol 2011; 20:2864–2870 [View Article]
    [Google Scholar]
  31. Morick D, Krasnov BR, Khokhlova IS, Shenbrot GI, Kosoy MY et al. Bartonella genotypes in fleas (Insecta: Siphonaptera) collected from rodents in the Negev desert, Israel. Appl Environ Microbiol 2010; 76:6864–6869 [View Article]
    [Google Scholar]
  32. Morick D, Krasnov BR, Khokhlova IS, Gutiérrez R, Fielden LJ et al. Effects of Bartonella spp. on flea feeding and reproductive performance. Appl Environ Microbiol 2013; 79:3438–3443 [View Article]
    [Google Scholar]
  33. Gutiérrez R, Markus B, Carstens Marques de Sousa K, Marcos-Hadad E, Mugasimangalam RC et al. Prophage-driven genomic structural changes promote Bartonella vertical evolution. Genome Biol Evol 2018; 10:3089–3103 [View Article]
    [Google Scholar]
  34. Clarridge JE, Raich TJ, Pirwani D, Simon B, Tsai L et al. Strategy to detect and identify Bartonella species in routine clinical laboratory yields Bartonella henselae from human immunodeficiency virus-positive patient and unique Bartonella strain from his cat. J Clin Microbiol 1995; 33:2107–2113
    [Google Scholar]
  35. Schneider CA, Rasband WS, Eliceiri KW. NIH image to ImageJ: 25 years of image analysis. Nat Methods 2012; 9:671–675 [View Article]
    [Google Scholar]
  36. Heller R, Riegel P, Hansmann Y, Delacour G, Bermond D et al. Bartonella tribocorum sp. nov., a new Bartonella species isolated from the blood of wild rats. Int J Syst Bacteriol 1998; 48:1333–1339 [View Article]
    [Google Scholar]
  37. Heller R, Kubina M, Mariet P, Riegel P, Delacour G et al. Bartonella alsatica sp. nov., a new Bartonella species isolated from the blood of wild rabbits. Int J Syst Bacteriol 1999; 49:283–288 [View Article]
    [Google Scholar]
  38. Li D-M, Hou Y, Song X-P, Fu Y-Q, Li G-C et al. High prevalence and genetic heterogeneity of rodent-borne Bartonella species on Heixiazi Island, China. Appl Environ Microbiol 2015; 81:7981–7992 [View Article]
    [Google Scholar]
  39. Sato S, Kabeya H, Fujinaga Y, Inoue K, Une Y et al. Bartonella jaculi sp. nov., Bartonella callosciuri sp. nov., Bartonella pachyuromydis sp. nov. and Bartonella acomydis sp. nov., isolated from wild Rodentia. Int J Syst Evol Microbiol 2013; 63:1734–1740 [View Article]
    [Google Scholar]
  40. Inoue K, Kabeya H, Shiratori H, Ueda K, Kosoy MY et al. Bartonella japonica sp. nov. and Bartonella silvatica sp. nov., isolated from Apodemus mice. Int J Syst Evol Microbiol 2010; 60:759–763 [View Article]
    [Google Scholar]
  41. Daly JS, Worthington MG, Brenner DJ, Moss CW, Hollis DG et al. Rochalimaea elizabethae sp. nov. isolated from a patient with endocarditis. J Clin Microbiol 1993; 31:872–881
    [Google Scholar]
  42. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 2017; 13:e1005595 [View Article]
    [Google Scholar]
  43. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article]
    [Google Scholar]
  44. Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S et al. RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep 2015; 5:8365 [View Article]
    [Google Scholar]
  45. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article]
    [Google Scholar]
  46. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article]
    [Google Scholar]
  47. Kalkatawi M, Alam I, Bajic VB. Beacon: automated tool for bacterial genome annotation comparison. BMC Genomics 2015; 16:616 [View Article]
    [Google Scholar]
  48. Berglund EC, Frank AC, Calteau A, Vinnere Pettersson O, Granberg F et al. Run-off replication of host-adaptability genes is associated with gene transfer agents in the genome of mouse-infecting Bartonella grahamii . PLoS Genet 2009; 5:e1000546 [View Article]
    [Google Scholar]
  49. Chain PSG, Comerci DJ, Tolmasky ME, Larimer FW, Malfatti SA et al. Whole-genome analyses of speciation events in pathogenic Brucellae. Infect Immun 2005; 73:8353–8361 [View Article]
    [Google Scholar]
  50. Barton BM, Harding GP, Zuccarelli AJ. A general method for detecting and sizing large plasmids. Anal Biochem 1995; 226:235–240 [View Article]
    [Google Scholar]
  51. Seubert A, Falch C, Birtles RJ, Schulein R, Dehio C. Characterization of the cryptic plasmid pBGR1 from Bartonella grahamii and construction of a versatile Escherichia coli–Bartonella spp. shuttle cloning vector. Plasmid 2003; 49:44–52 [View Article]
    [Google Scholar]
  52. Saenz HL, Engel P, Stoeckli MC, Lanz C, Raddatz G et al. Genomic analysis of Bartonella identifies type IV secretion systems as host adaptability factors. Nat Genet 2007; 39:1469–1476 [View Article]
    [Google Scholar]
  53. Guy L, Nystedt B, Toft C, Zaremba-Niedzwiedzka K, Berglund EC et al. A gene transfer agent and a dynamic repertoire of secretion systems hold the keys to the explosive radiation of the emerging pathogen Bartonella . PLoS Genet 2013; 9:e1003393 [View Article]
    [Google Scholar]
  54. Saisongkorh W, Robert C, La Scola B, Raoult D, Rolain J-M. Evidence of transfer by conjugation of type IV secretion system genes between Bartonella species and Rhizobium radiobacter in amoeba. PLoS One 2010; 5:e12666 [View Article]
    [Google Scholar]
  55. Drummond AJ, Suchard MA, Xie D, Rambaut A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 2012; 29:1969–1973 [View Article]
    [Google Scholar]
  56. Scola BL, Zeaiter Z, Khamis A, Raoult D. Gene-sequence-based criteria for species definition in bacteriology: the Bartonella paradigm. Trends Microbiol 2003; 11:318–321 [View Article]
    [Google Scholar]
  57. Yoon S-H, Ha S-min, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article]
    [Google Scholar]
  58. Price MN, Dehal PS, Arkin AP. FastTree 2 – approximately maximum-likelihood trees for large alignments. PLoS One 2010; 5:e9490 [View Article]
    [Google Scholar]
  59. Wattam AR, Davis JJ, Assaf R, Boisvert S, Brettin T et al. Improvements to PATRIC, the all-bacterial bioinformatics database and analysis resource center. Nucleic Acids Res 2017; 45:D535–D542 [View Article]
    [Google Scholar]
  60. Goris J, Klappenbach JA, Vandamme P, Coenye T, Konstantinidis KT et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article]
    [Google Scholar]
  61. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article]
    [Google Scholar]
  62. Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun 2018; 9:5114 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003952
Loading
/content/journal/ijsem/10.1099/ijsem.0.003952
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error