1887

Abstract

Two Gram-stain-positive, catalase-positive and oxidase-negative, aerobic, non-motile, cellobiose-utilizing, short-rod-shaped strains (Z28 and Z29) were isolated from faeces of Tibetan antelope () collected on the Qinghai–Tibet Plateau. Strain Z28 shared 98.1, 98.0, 97.8 and 97.4 % 16S rRNA gene similarity, 24.1, 22.8, 23.2 and 26.3 % digital DNA–DNA hybridization relatedness and 80.8, 80.0, 80.7 and 80.9 % average nucleotide identity values with DSM 24482, DSM 20109, DSM 14785 and JCM 14899, respectively. Results from further phylogenetic analyses based on the 16S rRNA gene and 148 core genes indicated that strains Z28 and Z29 were closest to DSM 24482 and DSM 20109, but clearly separated from the currently recognized species of the genus . The genomic DNA G+C content of strain Z28 was 75.3 mol%. The major cellular fatty acids were -C, -C A, C and -C. Ribose and mannose were detected as the whole-cell sugars. The major respiratory quinone was MK-9(H) and ornithine was the diamino acid of the cell wall. The polar lipids present in strain Z28 were phosphatidylethanolamine, five phospholipids, two aminophospholipids, aminolipid and three unidentified lipids. Comparison of phenotypic and phylogenetic features between the two strains and the related organisms revealed that Z28 and Z29 represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is Z28 (=CGMCC 1.16477=DSM 106200).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003939
2020-02-10
2020-02-28
Loading full text...

Full text loading...

References

  1. Bergey DH, Harrison FC, Breed RS, Hammer BW, Huntoon FM. Bergey’s Manual of Determinative Bacteriology Baltimore: Williams & Wilkins; 1923
    [Google Scholar]
  2. Stackebrandt E, Schumann P, Martin Dworkin.The family Cellulomonadaceae In Martin Dworkin. editor The Prokaryotes Berlin: Heidelberg: Springer; 2014; pp163–184
    [Google Scholar]
  3. Parte AC. LPSN – list of prokaryotic names with standing in Nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol 2018;68:1825–1829 [CrossRef]
    [Google Scholar]
  4. Lee C-M, Weon H-Y, Hong S-B, Jeon Y-A, Schumann P et al. Cellulomonas aerilata sp. nov., isolated from an air sample. Int J Syst Evol Microbiol 2008;58:2925–2929 [CrossRef]
    [Google Scholar]
  5. Shi Z, Luo G, Wang G. Cellulomonas carbonis sp. nov., isolated from coal mine soil. Int J Syst Evol Microbiol 2012;62:2004–2010 [CrossRef]
    [Google Scholar]
  6. Yoon M-H, Ten LN, Im W-T, Lee S-T. Cellulomonas chitinilytica sp. nov., a chitinolytic bacterium isolated from cattle-farm compost. Int J Syst Evol Microbiol 2008;58:1878–1884 [CrossRef]
    [Google Scholar]
  7. Hatayama K, Esaki K, Ide T. Cellulomonas soli sp. nov. and Cellulomonas oligotrophica sp. nov., isolated from soil. Int J Syst Evol Microbiol 2013;63:60–65 [CrossRef]
    [Google Scholar]
  8. Ahmed I, Kudo T, Abbas S, Ehsan M, Iino T et al. Cellulomonas pakistanensis sp. nov., a moderately halotolerant Actinobacteria. Int J Syst Evol Microbiol 2014;64:2305–2311 [CrossRef]
    [Google Scholar]
  9. DS A, WT I, Yang HC, Kang MS, Kim KK et al. Cellulomonas terrae sp. nov., a cellulolytic and xylanolytic bacterium isolated from soil. Int J Syst Evol Microbiol 2005;55:1705–1709
    [Google Scholar]
  10. Rivas R, Trujillo ME, Mateos PF, Martínez-Molina E, Velázquez E. Cellulomonas xylanilytica sp. nov., a cellulolytic and xylanolytic bacterium isolated from a decayed elm tree. Int J Syst Evol Microbiol 2004;54:533–536 [CrossRef]
    [Google Scholar]
  11. Brown JM, Frazier RP, Morey RE, Steigerwalt AG, Pellegrini GJ et al. Phenotypic and genetic characterization of clinical isolates of CDC coryneform group A-3: proposal of a new species of Cellulomonas, Cellulomonas denverensis sp. nov. J Clin Microbiol 2005;43:1732–1737 [CrossRef]
    [Google Scholar]
  12. Funke G, Ramos CP, Collins MD. Identification of some clinical strains of CDC coryneform group A-3 and A-4 bacteria as Cellulomonas species and proposal of Cellulomonas hominis sp. nov. for some group A-3 strains. J Clin Microbiol 1995;33:2091–2097 [CrossRef]
    [Google Scholar]
  13. Jin D, Chen C, Li L, Lu S, Li Z et al. Dynamics of fecal microbial communities in children with diarrhea of unknown etiology and genomic analysis of associated Streptococcus lutetiensis. BMC Microbiol 2013;13:141 [CrossRef]
    [Google Scholar]
  14. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef]
    [Google Scholar]
  15. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994;22:4673–4680 [CrossRef]
    [Google Scholar]
  16. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef]
    [Google Scholar]
  17. Guindon S, Gascuel O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 2003;52:696–704 [CrossRef]
    [Google Scholar]
  18. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425
    [Google Scholar]
  19. Kolaczkowski B, Thornton JW. Performance of maximum parsimony and likelihood phylogenetics when evolution is heterogeneous. Nature 2004;431:980–984 [CrossRef]
    [Google Scholar]
  20. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef]
    [Google Scholar]
  21. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef]
    [Google Scholar]
  22. Li D, Liu C-M, Luo R, Sadakane K, Lam T-W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 2015;31:1674–1676 [CrossRef]
    [Google Scholar]
  23. Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 2010;11:119 [CrossRef]
    [Google Scholar]
  24. Lowe TM, Chan PP. tRNAscan-SE on-line: integrating search and context for analysis of transfer RNA genes. Nucleic Acids Res 2016;44:W54–W57 [CrossRef]
    [Google Scholar]
  25. Lagesen K, Hallin P, Rødland EA, Stærfeldt H-H, Rognes T et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007;35:3100–3108 [CrossRef]
    [Google Scholar]
  26. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14:60 [CrossRef]
    [Google Scholar]
  27. Yoon S-H, Ha S-min, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017;110:1281–1286 [CrossRef]
    [Google Scholar]
  28. Chen C, Zhang W, Zheng H, Lan R, Wang H et al. Minimum core genome sequence typing of bacterial pathogens: a unified approach for clinical and public health microbiology. J Clin Microbiol 2013;51:2582–2591 [CrossRef]
    [Google Scholar]
  29. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013;30:772–780 [CrossRef]
    [Google Scholar]
  30. Price MN, Dehal PS, Arkin AP. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol 2009;26:1641–1650 [CrossRef]
    [Google Scholar]
  31. Huson DH, Scornavacca C. Dendroscope 3: an interactive tool for rooted phylogenetic trees and networks. Syst Biol 2012;61:1061–1067 [CrossRef]
    [Google Scholar]
  32. Austrian R. The Gram stain and the etiology of lobar pneumonia, an historical note. Bacteriol Rev 1960;24:261–265
    [Google Scholar]
  33. Xu Y, Xu X, Lan R, Xiong Y, Ye C et al. An O Island 172 Encoded RNA Helicase Regulates the Motility of Escherichia coli O157:H7. PLoS One 2013;8:e64211 [CrossRef]
    [Google Scholar]
  34. Kämpfer P, Kroppenstedt RM. Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 1996;42:989–1005 [CrossRef]
    [Google Scholar]
  35. Lechevalier MP, Lechevalier HA.The chemotaxonomy of actinomycetes In Dietz TDW. editor Actinomycete Taxonomy. Special Publication no. 6 Arlington, VA: Society for Industrial Microbiology; 1980; pp227–291
    [Google Scholar]
  36. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977;100:221–230 [CrossRef]
    [Google Scholar]
  37. Schleifer KH, Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 1972;36:407–477 [CrossRef]
    [Google Scholar]
  38. McKerrow J, Vagg S, McKinney T, Seviour EM, Maszenan AM, Seviour RJ et al. A simple HPLC method for analysing diaminopimelic acid diastereomers in cell walls of Gram-positive bacteria. Lett Appl Microbiol 2000;30:178–182 [CrossRef]
    [Google Scholar]
  39. Kim S-K, Kook M, Yan Z-F, Trinh H, Zheng S-D et al. Cellulomonas aurantiaca sp. nov., isolated from a soil sample from a tangerine field. Antonie van Leeuwenhoek 2019;112:1623–1632 [CrossRef]
    [Google Scholar]
  40. Kang M-S, Im W-T, Jung H-M, Kim MK, Goodfellow M et al. Cellulomonas composti sp. nov., a cellulolytic bacterium isolated from cattle farm compost. Int J Syst Evol Microbiol 2007;57:1256–1260 [CrossRef]
    [Google Scholar]
  41. Tian Y, Han C, Hu J, Zhao J, Zhang C et al. Cellulomonas rhizosphaerae sp. nov., a novel actinomycete isolated from soil. Int J Syst Evol Microbiol 2019;69:1001–1008 [CrossRef]
    [Google Scholar]
  42. Auch AF, von Jan M, Klenk H-P, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010;2:117–134 [CrossRef]
    [Google Scholar]
  43. Abt B, Foster B, Lapidus A, Clum A, Sun H et al. Complete genome sequence of Cellulomonas flavigena type strain (134T). Stand Genomic Sci 2010;3:15–25 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003939
Loading
/content/journal/ijsem/10.1099/ijsem.0.003939
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error