1887

Abstract

A Gram-stain-positive, facultatively anaerobic bacterium, strain JDX10, was isolated from a soil sample of Fildes Peninsula, Antarctica. Cells of the strain were irregular rod-shaped and non-motile. Cells grew at 4–40 °C (optimum, 28 °C), at pH 6.0–9.0 (optimum, 7.5) and with 0.0–3.0 % (w/v) NaCl (optimum, 1.0 %). According to phylogenetic analysis based on 16S rRNA gene sequences, strain JDX10 was associated with the genus , and showed highest similarities to CCTCC AB 2013217 (97.2 %), SST-39 (96.9 %) and JCM 32157 (96.9 %). The average nucleotide identity scores of strain JDX10 to CCTCC AB 2013217 and JCM 13525 were 74.8 and 73.3 %, respectively and the Genome-to-Genome Distance Calculator scores were 19.2 and 18.7 %, respectively. The major (>10.0 %) cellular fatty acid was anteiso-C. The predominant isoprenoid quinone was MK-10(H). The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol and one unidentified glycolipid. The phylogenetic analysis and physiological and biochemical data showed that strain JDX10 should be classified as representing a novel species in the genus , for which the name sp. nov. is proposed. The type strain is JDX10 (=MCCC 1H00351=KCTC 49242).

Funding
This study was supported by the:
  • National Natural Science Foundation of China (Award 41876166)
    • Principle Award Recipient: Liu-Yan Zhou
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003930
2019-12-20
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/3/1555.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003930&mimeType=html&fmt=ahah

References

  1. Maszenan AM, Seviour RJ, Patel BK, Schumann P, Rees GN. Tessaracoccus bendigoensis gen. nov., sp. nov., a Gram-positive coccus occurring in regular packages or tetrads, isolated from activated sludge biomass. Int J Syst Bacteriol 1999; 49:459–468 [View Article]
    [Google Scholar]
  2. Tak EJ, Kim HS, Lee JY, kang W, Hyun DW et al. Tessaracoccus aquimaris sp. nov., isolated from the intestine of a Korean rockfish, Sebastes schlegelii, from a marine aquaculture pond. Int J Syst Bacteriol 2018; 25:504–516
    [Google Scholar]
  3. Thongphrom C, Kim JH, Bora N, Kim W et al. Tessaracoccus arenae sp. nov., isolated from sea sand. Int J Syst Evol Microbiol 2017; 67:2008–2013 [View Article]
    [Google Scholar]
  4. Srinivasan S, Sundararaman A, Lee SS. Tessaracoccus defluvii sp. nov., isolated from an aeration tank of a sewage treatment plant. Antonie van Leeuwenhoek 2017; 110:1–9 [View Article]
    [Google Scholar]
  5. Lee DW, Lee SD. Tessaracoccus flavescens sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 2008; 58:785–789 [View Article]
    [Google Scholar]
  6. Kumari R, Schumann P, Lal R, Singh P. Tessaracoccus flavus sp. nov., isolated from the drainage system of a lindane-producing factory. Int J Syst Evol Microbiol 2016; 66:1862–1868 [View Article]
    [Google Scholar]
  7. Puente-Sánchez F, Sánchez-Román M, Amils R, Parro V. Tessaracoccus lapidicaptus sp. nov., an actinobacterium isolated from the deep subsurface of the Iberian pyrite belt. Int J Syst Evol Microbiol 2014; 64:3546–3552 [View Article]
    [Google Scholar]
  8. Kämpfer P, Lodders N, Warfolomeow I, Busse HJ. Tessaracoccus lubricantis sp. nov., isolated from a metalworking fluid. Int J Syst Evol Microbiol 2009; 59:1545–1549 [View Article]
    [Google Scholar]
  9. Cai M, Wang L, Cai H, Li Y, Wang YN et al. Salinarimonas ramus sp. nov. and Tessaracoccus oleiagri sp. nov., isolated from a crude oil-contaminated saline soil. Int J Syst Evol Microbiol 2011; 61:1767–1775 [View Article]
    [Google Scholar]
  10. Chaudhary DK, Kim J. Tessaracoccus terricola sp. nov., isolated from oil-contaminated soil. Int J Syst Evol Microbiol 2018; 68:529–535 [View Article]
    [Google Scholar]
  11. Li G-D, Chen X, Li Q-Y, Xu F-J, Qiu S-M et al. Tessaracoccus rhinocerotis sp. nov., isolated from the faeces of Rhinoceros unicornis . Int J Syst Evol Microbiol 2016; 66:922–927 [View Article]
    [Google Scholar]
  12. Mu D-S, Liang Q-Y, Wang X-M, Lu D-C, Shi M-J et al. Metatranscriptomic and comparative genomic insights into resuscitation mechanisms during enrichment culturing. Microbiome 2018; 6:230 [View Article]
    [Google Scholar]
  13. Du Z-J, Wang Y, Dunlap C, Rooney AP, Chen G-J. Draconibacterium orientale gen. nov., sp. nov., isolated from two distinct marine environments, and proposal of Draconibacteriaceae fam. nov. Int J Syst Evol Microbiol 2014; 64:1690–1696 [View Article]
    [Google Scholar]
  14. Liu QQ, Li XL, Rooney AP, Du ZJ, Chen GJ. Tangfeifania diversioriginum gen. nov., sp. nov., a representative of the family Draconibacteriaceae . Int J Syst Evol Microbiol 2014; 64:3473–3477 [View Article]
    [Google Scholar]
  15. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article]
    [Google Scholar]
  16. Thompson J, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article]
    [Google Scholar]
  17. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article]
    [Google Scholar]
  18. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  19. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article]
    [Google Scholar]
  20. Kumar S, Stecher G, Tamura K. MEGA 7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article]
    [Google Scholar]
  21. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article]
    [Google Scholar]
  22. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Soc Study Evol 1985; 39:1–15
    [Google Scholar]
  23. Angiuoli SV, Gussman A, Klimke W, Cochrane G, Field D et al. Toward an online repository of Standard Operating Procedures (SOPs) for (meta)genomic annotation. OMICS 2008; 12:137–141 [View Article]
    [Google Scholar]
  24. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article]
    [Google Scholar]
  25. Goris J, Klappenbach JA, Vandamme P, Coenye T, Konstantinidis KT et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article]
    [Google Scholar]
  26. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the AD hoc Committee on reconciliation of approaches to bacterial Systematics. Int J Syst Evol Microbiol 1987; 37:463–464 [View Article]
    [Google Scholar]
  27. Thompson CC, Chimetto L, Edwards RA, Swings J, Stackebrandt E et al. Microbial genomic taxonomy. BMC Genomics 2013; 14:913 [View Article]
    [Google Scholar]
  28. Spudich JL, Yang CS, Jung KH, Spudich EN. Retinylidene proteins: structures and functions from archaea to humans. Annu Rev Cell Dev Biol 2000; 16:365–392 [View Article]
    [Google Scholar]
  29. Balashov SP, Imasheva ES, Boichenko VA, Anton J, Wang JM et al. Xanthorhodopsin: a proton pump with a light-harvesting carotenoid antenna. Science 2005; 309:2061–2064 [View Article]
    [Google Scholar]
  30. Balashov SP, Lanyi JK. Xanthorhodopsin: proton pump with a carotenoid antenna. Cell Mol Life Sci 2007; 64:2323–2328 [View Article]
    [Google Scholar]
  31. Antón J, Oren A, Benlloch S, Rodríguez-Valera F, Amann R et al. Salinibacter ruber gen. nov., sp. nov., a novel, extremely halophilic member of the Bacteria from saltern crystallizer ponds. Int J Syst Evol Microbiol 2002; 52:485–491 [View Article]
    [Google Scholar]
  32. Mongodin EF, Nelson KE, Daugherty S, Deboy RT, Wister J et al. The genome of Salinibacter ruber: convergence and gene exchange among hyperhalophilic bacteria and archaea. Proc Natl Acad Sci USA 2005; 102:18147–18152 [View Article]
    [Google Scholar]
  33. Bowman JP. Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 2000; 50:1861–1868 [View Article]
    [Google Scholar]
  34. Cowan ST, Steel KJ. Bacterial Characters and Characterization , 2nd ed. Cambridge, UK: Cambridge University Press; 1974
    [Google Scholar]
  35. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society For Microbiology; 1994 pp 611–651
    [Google Scholar]
  36. CLSI Performance Standards for Antimicrobial Susceptibility Testing, Twenty-Second Informational Supplement CLSI document M100-S22 Wayne, PA: Clinical and Laboratory Standards Institute; 2012
    [Google Scholar]
  37. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974; 28:226–231
    [Google Scholar]
  38. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: Microbial ID, Inc; 1990
    [Google Scholar]
  39. Tindall BJ, Sikorski J, Smibert RM, Krieg NR. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf G, Schmidt TM. (editors) Methods for General and Molecular Microbiology, 3rd ed. Washington, DC: ASM Press; 2007 pp 330–393
    [Google Scholar]
  40. Kroppenstedt RM. Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 1982; 5:2359–2367 [View Article]
    [Google Scholar]
  41. Kates M. Techniques of Lipidology: Isolation, Analysis and Identification of Lipids, Laboratory Techniques in Biochemistry & Molecular Biology 3 Amsterdam: Elsevier; 1986 pp 0151–0155
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003930
Loading
/content/journal/ijsem/10.1099/ijsem.0.003930
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error