1887

Abstract

Genome analysis is one of the main criteria for description of new taxa. Availability of genome sequences for all the actinobacteria with a valid nomenclature will, however, require another decade’s works of sequencing. This paper describes the rearrangement of the higher taxonomic ranks of the members of the phylum ‘’, using the phylogeny of 16S rRNA gene sequences and supported by the phylogeny of the available genome sequences. Based on the refined phylogeny of the 16S rRNA gene sequences, we could arrange all the members of the 425 genera of the phylum ‘’ with validly published names currently in use into six classes, 46 orders and 79 families, including 16 new orders and 10 new families. The order Prévot 1940 (Approved Lists 1980) emend. Nouioui . 2018 is now split into 11 monophyletic orders: the emended order and ten proposed new orders , , , , , , , , and . Further, the class ‘’ Stackebrandt . 1997 emend. Nouioui . 2018 was described without any nomenclature type, and therefore the name ‘’ is deemed illegitimate. In accordance to Rule 8 of the International Code of Nomenclature of Prokaryotes, Parker . 2019, we proposed the name which is formed by using the stem of the name Buchanan 1917 (Approved Lists 1980) emend. Zhi . 2009, to replace the name ‘’. The nomenclature type of the proposed new class is the order Buchanan 1917 (Approved Lists 1980) emend. Zhi . 2009.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003920
2019-12-06
2020-01-24
Loading full text...

Full text loading...

References

  1. Stackebrandt E, Rainey FA, Ward-Rainey NL. Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol 1997;47: 479– 491 [CrossRef]
    [Google Scholar]
  2. Zhi X-Y, Li W-J, Stackebrandt E. An update of the structure and 16S rRNA gene sequence-based definition of higher ranks of the class Actinobacteria, with the proposal of two new suborders and four new families and emended descriptions of the existing higher taxa. Int J Syst Evol Microbiol 2009;59: 589– 608 [CrossRef]
    [Google Scholar]
  3. Hugenholtz P, Stackebrandt E. Reclassification of Sphaerobacter thermophilus from the subclass Sphaerobacteridae in the phylum Actinobacteria to the class Thermomicrobia (emended description) in the phylum Chloroflexi (emended description). Int J Syst Evol Microbiol 2004;54: 2049– 2051 [CrossRef]
    [Google Scholar]
  4. Cavaletti L, Monciardini P, Schumann P, Rohde M, Bamonte R et al. Actinospica robiniae gen. nov., sp. nov. and Actinospica acidiphila sp. nov.: proposal for Actinospicaceae fam. nov. and Catenulisporinae subord. nov. in the order Actinomycetales. Int J Syst Evol Microbiol 2006;56: 1747– 1753 [CrossRef]
    [Google Scholar]
  5. Ludwig W, Euzéby J, Schumann P, Busse HJ, Trujillo ME. Road map of the phylum Actinobacteria In Goodfellow M, Kämpfer P, Busse HJ, Trujillo ME, Suzuki K. (editors) Bergey’s Manual of Systematic Bacteriology: Volume Five The Actinobacteria New York, NY: Springer New York; 2012; pp 1– 28
    [Google Scholar]
  6. Suzuki K, Whitman WB. Class VI. Thermoleophilia In Goofellow M, Kämpfer P, Busse HJ, Trujillo ME, Suzuki K. (editors) Bergey's Manual of Systematic Bacteriology: Volume Five The Actinobacteria New York, NY: Springer New York; 2012; p 2010
    [Google Scholar]
  7. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018;68: 461– 466 [CrossRef]
    [Google Scholar]
  8. Gupta RS, Lo B, Son J. Phylogenomics and comparative genomic studies robustly support division of the genus Mycobacterium into an emended genus Mycobacterium and four novel genera. Front Microbiol 2018;9: 00067 [CrossRef]
    [Google Scholar]
  9. Montero-Calasanz MC, Meier-Kolthoff JP, Zhang D-F, Yaramis A, Rohde M et al. Genome-scale data call for a taxonomic rearrangement of Geodermatophilaceae. Front Microbiol 2017;8: 02501 [CrossRef]
    [Google Scholar]
  10. Heo J, Cho H, Kim MA, Hamada M, Tamura T et al. Protaetiibacter intestinalis gen. nov., of the family Microbacteriaceae, isolated from gut of Protaetia brevitarsis seulensis, reclassification of Lysinimonas kribbensis Jang et al. 2013 as Pseudolysinimonas kribbensis gen. nov., comb. nov. and emended description of the genus Lysinimonas Jang et al. 2013. Int J Syst Evol Microbiol2019: 2101– 2107
    [Google Scholar]
  11. Sen A, Daubin V, Abrouk D, Gifford I, Berry AM et al. Phylogeny of the class Actinobacteria revisited in the light of complete genomes. The orders 'Frankiales' and Micrococcales should be split into coherent entities: proposal of Frankiales ord. nov., Geodermatophilales ord. nov., Acidothermales ord. nov. and Nakamurellales ord. nov. Int J Syst Evol Microbiol 2014;64: 3821– 3832 [CrossRef]
    [Google Scholar]
  12. Normand P, Benson DR. Order VI. Frankiales ord. nov In Goodfellow M, Kämpfer P, Busse HJ, Trujillo ME, Suzuki K. (editors) Bergey’s Manual of Systematic Bacteriology: Volume Five The Actinobacteria New York, NY: Springer New York; 2012; pp 509– 511
    [Google Scholar]
  13. Baek I, Kim M, Lee I, Na S-I, Goodfellow M et al. Phylogeny trumps chemotaxonomy: A case study involving Turicella otitidis. Front Microbiol 2018;9: 00834 [CrossRef]
    [Google Scholar]
  14. Nouioui I, Carro L, García-López M, Meier-Kolthoff JP, Woyke T et al. Genome-based taxonomic classification of the phylum Actinobacteria. Front Microbiol 2018;9: 02007 [CrossRef]
    [Google Scholar]
  15. Wu D, Hugenholtz P, Mavromatis K, Pukall R, Dalin E et al. A phylogeny-driven genomic encyclopaedia of bacteria and archaea. Nature 2009;462: 1056– 1060 [CrossRef]
    [Google Scholar]
  16. Kyrpides NC, Hugenholtz P, Eisen JA, Woyke T, Göker M et al. Genomic encyclopedia of bacteria and archaea: sequencing a myriad of type strains. PLoS Biol 2014;12: e1001920 [CrossRef]
    [Google Scholar]
  17. Whitman WB, Woyke T, Klenk H-P, Zhou Y, Lilburn TG et al. Genomic encyclopedia of bacterial and archaeal type strains, Phase III: the genomes of soil and plant-associated and newly described type strains. Stand Genomic Sci 2015;10: 26 [CrossRef]
    [Google Scholar]
  18. Mukherjee S, Seshadri R, Varghese NJ, Eloe-Fadrosh EA, Meier-Kolthoff JP et al. 1003 reference genomes of bacterial and archaeal isolates expand coverage of the tree of life. Nat Biotechnol 2017;35: 676– 683 [CrossRef]
    [Google Scholar]
  19. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004;32: 1792– 1797 [CrossRef]
    [Google Scholar]
  20. Edgar RC. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 2004;5: 113 [CrossRef]
    [Google Scholar]
  21. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014;30: 1312– 1313 [CrossRef]
    [Google Scholar]
  22. Price MN, Dehal PS, Arkin AP. FastTree 2 – approximately maximum-likelihood trees for large alignments. PLoS One 2010;5: e9490 [CrossRef]
    [Google Scholar]
  23. Letunic I, Bork P. Interactive tree of life (iTOL) V3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res 2016;44: W242– W245 [CrossRef]
    [Google Scholar]
  24. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015;25: 1043– 1055 [CrossRef]
    [Google Scholar]
  25. Wu M, Scott AJ. Phylogenomic analysis of bacterial and archaeal sequences with AMPHORA2. Bioinformatics 2012;28: 1033– 1034 [CrossRef]
    [Google Scholar]
  26. Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 2000;17: 540– 552 [CrossRef]
    [Google Scholar]
  27. Liu K, Linder CR, Warnow T, RAxML WT. RAxML and FastTree: comparing two methods for large-scale maximum likelihood phylogeny estimation. PLoS One 2011;6: e27731 [CrossRef]
    [Google Scholar]
  28. Verma M, Lal D, Kaur J, Saxena A, Kaur J et al. Phylogenetic analyses of phylum Actinobacteria based on whole genome sequences. Res Microbiol 2013;164: 718– 728 [CrossRef]
    [Google Scholar]
  29. Parker CT, Tindall BJ, Garrity GM. International code of nomenclature of prokaryotes. Int J Syst Evol Microbiol 2019;69: S1– S111
    [Google Scholar]
  30. Oren A. Proposal to designate the order Actinomycetales Buchanan 1917, 162 (Approved Lists 1980) as the nomenclatural type of the class Actinobacteria. Request for an Opinion. Int J Syst Evol Microbiol 2017;67: 3687– 3688 [CrossRef]
    [Google Scholar]
  31. Oren A, da Costa MS, Garrity GM, Rainey FA, Rosselló-Móra R et al. Proposal to include the rank of phylum in the International Code of Nomenclature of Prokaryotes. Int J Syst Evol Microbiol 2015;65: 4284– 4287 [CrossRef]
    [Google Scholar]
  32. Whitman WB, Oren A, Chuvochina M, da Costa MS, Garrity GM et al. Proposal of the suffix –ota to denote phyla. Addendum to ‘Proposal to include the rank of phylum in the International Code of Nomenclature of Prokaryotes’. Int J Syst Evol Microbiol 2018;68: 967– 969 [CrossRef]
    [Google Scholar]
  33. Stackebrandt E, Seiler H, Schleifer KH. Union of the genera Cellulomonas Bergey et al. and Oerskovia Prauser et al. in a redefined genus Cellulomonas. Zentralblatt für Bakteriologie Mikrobiologie und Hygiene: I. Abt. Originale C: Allgemeine, angewandte und ökologische Mikrobiologie 1982;3: 401– 409 [CrossRef]
    [Google Scholar]
  34. Stackebrandt E, Breymann S, Steiner U, Prauser H, Weiss N et al. Re-evaluation of the staus of the genus Oerskovia. Reclassification of Promicromonospora enterophila (Jáger, et al. 1983) as Oerskovia enterophila comb. nov. and description of Oerskovia jenensis sp. nov. and Oerskovia paurometabola sp. nov. Int J Syst Evol Microbiol2002: 1105– 1111
    [Google Scholar]
  35. Kurahashi M, Fukunaga Y, Sakiyama Y, Harayama S, Yokota A. Iamia majanohamensis gen. nov., sp. nov., an actinobacterium isolated from sea cucumber Holothuria edulis, and proposal of Iamiaceae fam. nov. Int J Syst Evol Microbiol 2009;59: 869– 873 [CrossRef]
    [Google Scholar]
  36. Asem MD, Shi L, Jiao J-Y, Wang D, Han M-X et al. Desertimonas flava gen. nov., sp. nov. isolated from a desert soil, and proposal of Ilumatobacteraceae fam. nov. Int J Syst Evol Microbiol 2018;68: 3593– 3599 [CrossRef]
    [Google Scholar]
  37. Busse HJ. Order X. Micrococcales Prévot 1940, 223AL In Goodfellow M, Kämpfer P, Busse HJ, Trujillo ME, Suzuki K. (editors) Bergey’s Manual of Systematic Bacteriology: Volume Five The Actinobacteria New York: Springer New York; 2012; pp 569– 570
    [Google Scholar]
  38. Sakamoto M, Ikeyama N, Murakami T, Mori H, Yuki M et al. Comparative genomics of Parolsenella catena and Libanicoccus massiliensis: Reclassification of Libanicoccus massiliensis as Parolsenella massiliensis comb. nov. Int J Syst Evol Microbiol 2019;69: 1123– 1129 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003920
Loading
/content/journal/ijsem/10.1099/ijsem.0.003920
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error