gen. nov., sp. nov., isolated from a tidal mudflat of beach, and transfer of to comb. nov. and to gen. nov. as comb. nov. Free

Abstract

A Gram-reaction-negative, motile by gliding, rod-shaped bacterium, designated strain GH4-78, was isolated from the tidal mudflat of a beach in the Republic of Korea. Cells were aerobic, catalase-positive, oxidase-negative and produced cream-coloured colonies. Q-8 was the only isoprenoid quinone. The major fatty acids were summed feature 8 (C 7 and/or C 6), summed feature 3 (C ω6 and/or C ω7) and C. The major polar lipids are phosphatidylethanolamine and phosphatidylglycerol. Results of phylogenetic analyses based on 16S rRNA gene sequences revealed that strain GH4-78 formed a distinct lineage with (98.2 % sequence similarity). The DNA G+C content was 59.9 mol%. The average nucleotide identity value with the closest relative was 82.90 %. On the basis of the results from phenotypic, chemotaxonomic, phylogenetic and phylogenomic analyses, strain GH4-78 (=KCTC 62383=DSM 106349) represents a novel species of a new genus in the family , for which the name gen. nov., sp. nov. is proposed. Moreover, the transfers of Han . 2019 to comb. nov. and Shi . 2018 to gen. nov. as comb. nov. are also proposed, with the emended description of the genus .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003914
2020-02-20
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/4/2194.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003914&mimeType=html&fmt=ahah

References

  1. Spring S, Scheuner C, Göker M, Klenk H-P. A taxonomic framework for emerging groups of ecologically important marine Gammaproteobacteria based on the reconstruction of evolutionary relationships using genome-scale data. Front Microbiol 2015; 6:281 [View Article]
    [Google Scholar]
  2. Csotonyi JT, Stackebrandt E, Swiderski J, Schumann P, Yurkov V. Chromocurvus halotolerans gen. nov., sp. nov., a gammaproteobacterial obligately aerobic anoxygenic phototroph, isolated from a Canadian hypersaline spring. Arch Microbiol 2011; 193:573–582 [View Article]
    [Google Scholar]
  3. Spring S, Lünsdorf H, Fuchs BM, Tindall BJ. The photosynthetic apparatus and its regulation in the aerobic gammaproteobacterium Congregibacter litoralis gen. nov., sp. nov. PLoS One 2009; 4:e4866 [View Article]
    [Google Scholar]
  4. Urios L, Intertaglia L, Lesongeur F, Lebaron P. Haliea salexigens gen. nov., sp. nov., a member of the Gammaproteobacteria from the Mediterranean Sea. Int J Syst Evol Microbiol 2008; 58:1233–1237 [View Article]
    [Google Scholar]
  5. Park S, Yoshizawa S, Inomata K, Kogure K, Yokota A. Halioglobus japonicus gen. nov., sp. nov. and Halioglobus pacificus sp. nov., members of the class Gammaproteobacteria isolated from seawater. Int J Syst Evol Microbiol 2012; 62:1784–1789 [View Article]
    [Google Scholar]
  6. Spring S, Riedel T, Spröer C, Yan S, Harder J et al. Taxonomy and evolution of bacteriochlorophyll a-containing members of the OM60/NOR5 clade of marine gammaproteobacteria: description of Luminiphilus syltensis gen. nov., sp. nov., reclassification of Haliea rubra as Pseudohaliea rubra gen. nov., comb. nov., and emendation of Chromatocurvus halotolerans . BMC Microbiol 2013; 13:118 [View Article]
    [Google Scholar]
  7. Lin C-Y, Zhang X-Y, Liu A, Liu C, Song X-Y et al. Haliea atlantica sp. nov., isolated from seawater, transfer of Haliea mediterranea to Parahaliea gen. nov. as Parahaliea mediterranea comb. nov. and emended description of the genus Haliea . Int J Syst Evol Microbiol 2015; 65:3413–3418 [View Article]
    [Google Scholar]
  8. Konkit M, Kim J-H, Kim W. Marimicrobium arenosum gen. nov., sp. nov., a moderately halophilic bacterium isolated from sea sand. Int J Syst Evol Microbiol 2016; 66:856–861 [View Article]
    [Google Scholar]
  9. Urios L, Intertaglia L, Lesongeur F, Lebaron P. Haliea rubra sp. nov., a member of the Gammaproteobacteria from the Mediterranean Sea. Int J Syst Evol Microbiol 2009; 59:1188–1192 [View Article]
    [Google Scholar]
  10. Lucena T, Pascual J, Garay E, Arahal DR, Macián MC et al. Haliea mediterranea sp. nov., a marine gammaproteobacterium. Int J Syst Evol Microbiol 2010; 60:1844–1848 [View Article]
    [Google Scholar]
  11. Jung HS, Jeong SE, Kim KH, Jeon CO. Parahaliea aestuarii sp. nov., isolated from the Asan Bay estuary. Int J Syst Evol Microbiol 2017; 67:1431–1435 [View Article]
    [Google Scholar]
  12. Shi M-J, Wang C, Wang X-T, Du Z-J. Halioglobus lutimaris sp. nov., isolated from coastal sediment. Int J Syst Evol Microbiol 2018; 68:876–880 [View Article]
    [Google Scholar]
  13. Han J-R, Ye M-Q, Wang C, Du Z-J, M-Q Y, ZH D. Halioglobus sediminis sp. nov., isolated from coastal sediment. Int J Syst Evol Microbiol 2019; 69:1601–1605 [View Article]
    [Google Scholar]
  14. Kovacs N. Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 1956; 178:703 [View Article]
    [Google Scholar]
  15. Yamaguchi S, Yokoe M. A novel protein-deamidating enzyme from Chryseobacterium proteolyticum sp. nov., a newly isolated bacterium from soil. Appl Environ Microbiol 2000; 66:3337–3343 [View Article]
    [Google Scholar]
  16. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp 607–654
    [Google Scholar]
  17. Chun J, Goodfellow M. A phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences. Int J Syst Bacteriol 1995; 45:240–245 [View Article]
    [Google Scholar]
  18. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22:4673–4680 [View Article]
    [Google Scholar]
  19. Brosius J, Palmer ML, Kennedy PJ, Noller HF. Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli . Proc Natl Acad Sci USA 1978; 75:4801–4805 [View Article]
    [Google Scholar]
  20. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article]
    [Google Scholar]
  21. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  22. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article]
    [Google Scholar]
  23. Felsenstein J. PHYLIP (phylogeny inference package), version 3.5c Seattle, USA: Department of Genetics, University of Washington; 1993
    [Google Scholar]
  24. Cantor CR, Jukes TH. Evolution of protein molecule. In Munro HN. editor Mammalian Protein Metabolism New York: Academic Press; 1969 pp 21–132
    [Google Scholar]
  25. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article]
    [Google Scholar]
  26. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article]
    [Google Scholar]
  27. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article]
    [Google Scholar]
  28. Lefort V, Desper R, Gascuel O. FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol Biol Evol 2015; 32:2798–2800 [View Article]
    [Google Scholar]
  29. Farris JS. Estimating phylogenetic trees from distance matrices. Am Nat 1972; 106:645–668 [View Article]
    [Google Scholar]
  30. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article]
    [Google Scholar]
  31. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  32. Komagata K, Suzuki K. Lipids and cell-wall analysis in bacterial systematics. Methods Microbiol 1987; 19:161–207
    [Google Scholar]
  33. Collins MD. Isoprenoid quinones. Chemical Methods in Prokaryotic Systematics Chichester: John Wiley & Sons Ltd; 1994 pp 265–309
    [Google Scholar]
  34. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:12196–19131 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003914
Loading
/content/journal/ijsem/10.1099/ijsem.0.003914
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed