1887

Abstract

Strains of , thought to play vital roles in the environment for their high enzyme production capacity, are ubiquitous in various ecosystems. During an analysis of bacterial diversity in saline soil, a Gram-stain-negative, aerobic, chitin-degrading bacterial strain, designated SJ-36, was isolated from saline-alkaline soil sampled at Tumd Right Banner, Inner Mongolia, PR China. Strain SJ-36 grew at 4–40 °C (optimum, 30 °C), pH 5.0–10.0 (optimum, pH 7.0–8.0) and 0–6 % NaCl (optimum, 1.0 %). Oxidase and catalase activities were positive. A phylogenetic tree based on 16S rRNA gene sequences and the phylogenomic tree both showed that strain SJ-36 formed a tight clade with KMU-14 (sharing 97.6 % 16S rRNA gene similarity) and S2-C (97.8 %). The major polar lipids of strain SJ-36 were phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, two unidentified lipids and one unidentified phospholipid. The major fatty acids were iso-C (37.5 %), summed feature 9 (14.0 %; iso-Cω9 and/or C 10-methyl) and iso-C (10.6 %). Q-8 was the predominant ubiquinone. Its genomic DNA GC content was 66.6 mol%. The average nucleotide identity values of strain SJ-36 to KMU-14, S2-C and other type strains were 81.5, 79.1 and <79.0 %, respectively. The results of physiological, phenotypic and phylogenetic characterizations allowed the discrimination of strain SJ-36 from its phylogenetic relatives. sp. nov. is therefore proposed with strain SJ-36 (=CGMCC 1.16756=KCTC 43039) as the type strain.

Funding
This study was supported by the:
  • National Natural Science Foundation of China (Award 31960020)
    • Principle Award Recipient: Ji-Quan Sun
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003911
2019-12-18
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/2/ijsem003911.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003911&mimeType=html&fmt=ahah

References

  1. Christensen P, COOK FD, Lysobacter CFD. Lysobacter, a new genus of Nonfruiting, gliding bacteria with a high base ratio. Int J Syst Bacteriol 1978; 28:367–393 [View Article]
    [Google Scholar]
  2. Park JH, Kim R, Aslam Z, Jeon CO, Chung YR. Lysobacter capsici sp. nov., with antimicrobial activity, isolated from the rhizosphere of pepper, and emended description of the genus Lysobacter . Int J Syst Evol Microbiol 2008; 58:387–392 [View Article]
    [Google Scholar]
  3. Parte AC. LPSN – list of prokaryotic names with standing in Nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol 2018; 68:1825–1829 [View Article]
    [Google Scholar]
  4. Luo Y, Dong H, Zhou M, Huang Y, Zhang H et al. Lysobacter psychrotolerans sp. nov., isolated from soil in the Tianshan Mountains, Xinjiang, China. Int J Syst Evol Microbiol 2019; 69:926–931 [View Article]
    [Google Scholar]
  5. Zhang XJ, Yao Q, Wang YH, Yang SZ, Feng GD et al. Lysobacter silvisoli sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 2019; 69:93–98 [View Article]
    [Google Scholar]
  6. Xiao M, Zhou XK, Chen X, Duan YQ, Alkhalifah DHM et al. Lysobacter tabacisoli sp. nov., isolated from rhizosphere soil of Nicotiana tabacum L. Int J Syst Evol Microbiol 2019; 69:1875–1880 [View Article]
    [Google Scholar]
  7. Chhetri G, Kim J, Kim I, Seo T. Lysobacter caseinilyticus, sp. nov., a casein hydrolyzing bacterium isolated from sea water. Antonie van Leeuwenhoek 2019; 112:1349–1356 [View Article]
    [Google Scholar]
  8. Kim I, Choi J, Chhetri G, Seo T. Lysobacter helvus sp. nov. and Lysobacter xanthus sp. nov., isolated from Soil in South Korea. Antonie van Leeuwenhoek 2019; 112:1253–1262 [View Article]
    [Google Scholar]
  9. Bai H, Lv H, Deng A, Jiang X, Li X et al. Lysobacter oculi sp. nov., isolated from human Meibomian gland secretions. Antonie van Leeuwenhoek 2019; 95: [View Article]
    [Google Scholar]
  10. Jang JH, Lee D, Seo T. Lysobacter pedocola sp. nov., a novel species isolated from Korean soil. J Microbiol 2018; 56:387–392 [View Article]
    [Google Scholar]
  11. Takami H, Toyoda A, Uchiyama I, Itoh T, Takaki Y et al. Complete genome sequence and expression profile of the commercial lytic enzyme producer Lysobacter enzymogenes M497-1. DNA Res 2017; 24:169–177 [View Article]
    [Google Scholar]
  12. Bai Y, Müller DB, Srinivas G, Garrido-Oter R, Potthoff E et al. Functional overlap of the Arabidopsis leaf and root microbiota. Nature 2015; 528:364–369 [View Article]
    [Google Scholar]
  13. Xu L, Zhang H, Xing Y-T, Li N, Wang S et al. Complete genome sequence of Sphingobacterium psychroaquaticum strain SJ-25, an aerobic bacterium capable of suppressing fungal pathogens. Curr Microbiol 2019; 665: [View Article]
    [Google Scholar]
  14. Ma JP WZ, Lu P, Wang HJ, Ali SW et al. Biodegradation of the sulfonylurea herbicide chlorimuron-ethyl by the strain Pseudomonas sp. LW3. FEMS Microbiol Lett 2010; 296:203–209
    [Google Scholar]
  15. Yoon SH, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article]
    [Google Scholar]
  16. Thompson JD, Gibson TJ, Plewniak F, Jeanpougin F, Higgins DG. The CLUSTAL_X windows interface:flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 24:4876–4882
    [Google Scholar]
  17. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article]
    [Google Scholar]
  18. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article]
    [Google Scholar]
  19. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article]
    [Google Scholar]
  20. Rzhetsky A, Nei M. Theoretical Foundation of the minimum-evolution method of phylogenetic inference. Mol Biol Evol 1993; 10:1073–1095
    [Google Scholar]
  21. Rzhetsky A, Nei M. A simple method for estimating and testing Minimum-Evolution trees. Mol Biol Evol 1992; 9:945–967
    [Google Scholar]
  22. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article]
    [Google Scholar]
  23. Yoon J. Polyphasic Characterization of Lysobacter maris sp. nov., a Bacterium Isolated from Seawater. Curr Microbiol 2016; 72:282–287
    [Google Scholar]
  24. Jeong SE, Lee HJ, Jeon CO. Lysobacter aestuarii sp. nov., isolated from estuary sediment. Int J Syst Evol Microbiol 2016; 66:1346–1351 [View Article]
    [Google Scholar]
  25. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article]
    [Google Scholar]
  26. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article]
    [Google Scholar]
  27. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article]
    [Google Scholar]
  28. Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 2010; 11:119 [View Article]
    [Google Scholar]
  29. Qi J, Wang B, Hao B-I. Whole proteome prokaryote phylogeny without sequence alignment: a K -String composition approach. J Mol Evol 2004; 58:1–11 [View Article]
    [Google Scholar]
  30. Zuo G, Hao B. CVTree3 web server for whole-genome-based and alignment-free prokaryotic phylogeny and taxonomy. Genomics Proteomics Bioinformatics 2015; 13:321–331 [View Article]
    [Google Scholar]
  31. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids MIDI Technical Note 101 Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  32. Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article]
    [Google Scholar]
  33. Kates M. Techniques of Lipidology, 2nd ed. Elsevier: Amsterdam; 1986
    [Google Scholar]
  34. Komagata K, Suzuki K. Lipid and cell wall analysis in bacterial Systematics. Methods Microbiol 1987; 19:161–207
    [Google Scholar]
  35. Smibert RM, Krieg NR. Phenotypic Characterization. Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994
    [Google Scholar]
  36. Dong XZ, Cai MY. Determinative Manual for Routine Bacteriology Beijing: Scientific Press; 2001
    [Google Scholar]
  37. Bowman JP. Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 2000; 50:1861–1868 [View Article]
    [Google Scholar]
  38. Kim BC, Jeong WJ, Kim DY, Oh HW, Kim H et al. Paenibacillus pueri sp. nov., isolated from Pu'er tea. Int J Syst Evol Microbiol 2009; 59:1002–1006 [View Article]
    [Google Scholar]
  39. Fautz E, Reichenbach H. A simple test for flexirubin-type pigments. FEMS Microbiol Lett 1980; 8:87–91 [View Article]
    [Google Scholar]
  40. Fraser SL, Jorgensen JH. Reappraisal of the antimicrobial susceptibilities of Chryseobacterium and Flavobacterium species and methods for reliable susceptibility testing. Antimicrob Agents Chemother 1997; 41:2738–2741 [View Article]
    [Google Scholar]
  41. Yassin AF, Chen WM, Hupfer H, Siering C, Kroppenstedt RM et al. Lysobacter defluvii sp. nov., isolated from municipal solid waste. Int J Syst Evol Microbiol 2007; 57:1131–1136 [View Article]
    [Google Scholar]
  42. Bae H-S, Im W-T, Lee ST, Lee ST. Lysobacter concretionis sp. nov., isolated from anaerobic granules in an upflow anaerobic sludge blanket reactor. Int J Syst Evol Microbiol 2005; 55:1155–1161 [View Article]
    [Google Scholar]
  43. Luo G, Shi Z, Wang G. Lysobacter arseniciresistens sp. nov., an arsenite-resistant bacterium isolated from iron-mined soil. Int J Syst Evol Microbiol 2012; 62:1659–1665 [View Article]
    [Google Scholar]
  44. Romanenko LA, Uchino M, Tanaka N, Frolova GM, Mikhailov VV. Lysobacter spongiicola sp. nov., isolated from a deep-sea sponge. Int J Syst Evol Microbiol 2008; 58:370–374 [View Article]
    [Google Scholar]
  45. Xie B, Li T, Lin X, Wang CJ, Chen YJ et al. Lysobacter erysipheiresistens sp. nov., an antagonist of powdery mildew, isolated from tobacco-cultivated soil. Int J Syst Evol Microbiol 2016; 66:4016–4021
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003911
Loading
/content/journal/ijsem/10.1099/ijsem.0.003911
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error