1887

Abstract

An actinobacterial strain, designated FW100M-8, was isolated from a gut sample of larva of at the National Institute of Agricultural Sciences, Wanju-gun, South Korea. Cells were Gram-stain-positive, microaerophilic to aerobic, non-spore forming and non-motile. It grew at pH 7.0–9.0 (optimum, pH 8.0), at 15–35 °C (optimum, 28 °C) and 0–3.0 % (w/v) NaCl (optimum, 0 %). According to the 16S rRNA gene analysis, strain FW100M-8 shared the highest sequence similarity with DSM 20152 (98.4 %), XIL01 (98.3 %), NIO-1018 (98.3 %), MJ21 (98.3 %), and AK-1 (97.9 %). Phylogenetic trees showed that strain FW100M-8 fell into the lineage of the genus . The polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, an unidentified glycolipid and an unidentified lipid. The menaquinones of strain FW100M-8 were MK-12 (46 %), MK-11 (36 %), MK-10 (14 %) and MK-13 (4 %). The major fatty acids were anteiso-C, anteiso-C and iso-C. The peptidoglycan type was supposed to be the type B1, comprising -Ala, -Glu, Gly and -Abu. The G+C content of the genomic DNA is 70.5 mol%. On the basis of the genotypic and phenotypic data, we conclude that strain FW100M-8 represents a novel species of the genus , for which the name sp. nov. is proposed with strain FW100M-8 (=KACC 19308=NBRC 113048) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003908
2019-12-18
2020-01-24
Loading full text...

Full text loading...

References

  1. Gledhill WE, Casida LE. Predominant Catalase-negative Soil Bacteria. III. Agromyces, gen. n., Microorganisms Intermediary to Actinomyces and Nocardia. Appl Microbiol 1969;18:340–349
    [Google Scholar]
  2. Zgurskaya HI, Evtushenko LI, Akimov VN, Voyevoda HV, Dobrovolskaya TG et al. Emended description of the genus Agromyces and description of Agromyces cerinus subsp. cerinus sp. nov., subsp. nov., Agromyces cerinus subsp. nitratus sp. nov., subsp. nov., Agromyces fucosus subsp. fucosus sp. nov., subsp. nov., and Agromyces fucosus subsp. hippuratus sp. nov., subsp. nov. Int J Syst Bacteriol 1992;42:635–641 [CrossRef]
    [Google Scholar]
  3. Hamada M, Saitou S, Tamura T. Agromyces mangrovi sp. nov., a novel actinobacterium isolated from the rhizosphere of a mangrove. Arch Microbiol 2018;200:939–943 [CrossRef]
    [Google Scholar]
  4. Wang R, Chen C, Su Y, Yu X, Zhang C et al. Agromyces mangrovi sp. nov., a novel actinobacterium isolated from mangrove soil. Curr Microbiol 2018;75:1055–1061 [CrossRef]
    [Google Scholar]
  5. Rivas R, Trujillo ME, Mateos PF, Martínez-Molina E, Velázquez E. Agromyces ulmi sp. nov., a xylanolytic bacterium isolated from Ulmus nigra in Spain. Int J Syst Evol Microbiol 2004;54:1987–1990 [CrossRef]
    [Google Scholar]
  6. Jung SY, Lee SY, Oh TK, Yoon JH. Agromyces allii sp. nov., isolated from the rhizosphere of Allium victorialis var. platyphyllum. Int J Syst Evol Microbiol 2007;57:588–593 [CrossRef]
    [Google Scholar]
  7. Park EJ, Kim MS, Jung MJ, Roh SW, Chang HW et al. Agromyces atrinae sp. nov., isolated from fermented seafood. Int J Syst Evol Microbiol 2010;60:1056–1059 [CrossRef]
    [Google Scholar]
  8. Hamada M, Shibata C, Tamura T, Suzuki KI. Agromyces marinus sp. nov., a novel actinobacterium isolated from sea sediment. J Antibiot 2014;67:703–706 [CrossRef]
    [Google Scholar]
  9. Chen Z, Guan Y, Li J, Wang J. Agromyces binzhouensis sp. nov., an actinobacterium isolated from a coastal wetland of the yellow River delta. Int J Syst Evol Microbiol 2016;66:2278–2283 [CrossRef]
    [Google Scholar]
  10. Chin C-S, Alexander DH, Marks P, Klammer AA, Drake J et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 2013;10:563–569 [CrossRef]
    [Google Scholar]
  11. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016;44:6614–6624 [CrossRef]
    [Google Scholar]
  12. Yoon SH, SM H, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA and whole genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617
    [Google Scholar]
  13. Auch AF, von Jan M, Klenk H-P, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010;2:117–134 [CrossRef]
    [Google Scholar]
  14. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14:60 [CrossRef]
    [Google Scholar]
  15. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018;68:461–466 [CrossRef]
    [Google Scholar]
  16. Felske A, Rheims H, Wolterink A, Stackebrandt E, Akkermans ADL. Ribosome analysis reveals prominent activity of an uncultured member of the class Actinobacteria in grassland soils. Microbiology 1997;143:2983–2989 [CrossRef]
    [Google Scholar]
  17. Lagesen K, Hallin P, Rødland EA, Staerfeldt HH, Rognes T et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007;35:3100–3108 [CrossRef]
    [Google Scholar]
  18. Pruesse E, Peplies J, Glöckner FO. Sina: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012;28:1823–1829 [CrossRef]
    [Google Scholar]
  19. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef]
    [Google Scholar]
  20. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef]
    [Google Scholar]
  21. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef]
    [Google Scholar]
  22. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971;20:406–416 [CrossRef]
    [Google Scholar]
  23. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994;22:4673–4680 [CrossRef]
    [Google Scholar]
  24. Gregersen T. Rapid method for distinction of gram-negative from gram-positive bacteria. Eur J Appl Microbiol Biotechnol 1978;5:123–127 [CrossRef]
    [Google Scholar]
  25. Smibert R, Krieg NR.Phenotypic characterization In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp607–654
    [Google Scholar]
  26. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE, USA: Microbial ID Inc; 1990
    [Google Scholar]
  27. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  28. Hamada M, Yamamura H, Komukai C, Tamura T, Suzuki K-ichiro et al. Luteimicrobium album sp. nov., a novel actinobacterium isolated from a lichen collected in Japan, and emended description of the genus Luteimicrobium. J Antibiot 2012;65:427–431 [CrossRef]
    [Google Scholar]
  29. Suzuki KI, Sasaki J, Uramoto M, Nakase T, Komagata K. Agromyces mediolanus sp. nov., nom. rev., comb. nov., a Species for "Corynebacterium mediolanum" Mamoli 1939 and for Some Aniline-Assimilating Bacteria Which Contain 2,4-Diaminobutyric Acid in the Cell Wall Peptidoglycan. Int J Syst Bacteriol 1996;46:88–93 [CrossRef]
    [Google Scholar]
  30. Lee M, Ten LN, Woo SG, Park J. Agromyces soli sp. nov., isolated from farm soil. Int J Syst Evol Microbiol 2011;61:1286–1292 [CrossRef]
    [Google Scholar]
  31. Dastager SG, Qiang Z-L, Damare S, Tang S-K, Li W-J. Agromyces indicus sp. nov., isolated from mangroves sediment in Chorao Island, Goa, India. Antonie Van Leeuwenhoek 2012;102:345–352 [CrossRef]
    [Google Scholar]
  32. Schleifer KH, Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 1972;36:407–477
    [Google Scholar]
  33. Hamada M, Shibata C, Ishida Y, Tamura T, Yamamura H et al. Agromyces iriomotensis sp. nov. and Agromyces subtropicus sp. nov., isolated from soil. Int J Syst Evol Microbiol 2014;64:833–838 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003908
Loading
/content/journal/ijsem/10.1099/ijsem.0.003908
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error