1887

Abstract

A bacterial strain, designated Sp-1, was isolated from the heterotrich ciliate collected from a reservoir located in Ulsan, Republic of Korea. Cells of Sp-1 were Gram stain-negative, rod-shaped, non-spore-forming, non-motile and contained poly-β-hydroxybutyrate granules. Phylogenetic analyses based on 16S rRNA gene sequences indicated that Sp-1 constituted a distinct phylogenetic lineage within different families in the order with a pairwise sequence similarity of 95 % to the species of the genus ATCC 49188 and ESC1 (family ). The major cellular fatty acids were C cyclo ω8 (44.4 %) and C (32.1 %). The identified sole isoprenoid quinone was ubiquinone-10 (Q-10). The major polar lipids produced were phosphatidylcholine, phosphatidylglycerol, phosphatidylethanolamine, an unidentified aminolipid, two unidentified phospholipids and three unidentified lipids. The genome size was about 5.4 Mbp and the DNA G+C content was 68.2 mol%. Sp-1 exhibited the highest average nucleotide identity value of 76.6 % and DNA–DNA hybridization value of 22.1 % with DSM 19599 (family ). This strain is distinguishable from closely related members of the order by its differential phenotypic, chemotaxonomic, genomic and phylogenetic characteristics. On the basis of evidence from polyphasic taxonomic analysis, we concluded that Sp-1 represents a novel species in a novel genus within the order , for which the name gen. nov., sp. nov. is proposed. The type strain is Sp-1 (=KCTC 62036=JCM 32162). We also describe a novel family, fam. nov., to encompass the proposed novel genus and species.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution NonCommercial License.
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003907
2019-12-04
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/2/ijsem003907.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003907&mimeType=html&fmt=ahah

References

  1. Senra MVX, Dias RJP, Castelli M, Silva-Neto ID, Verni F et al. A house for two—double bacterial infection in Euplotes woodruffi Sq1 (Ciliophora, Euplotia) sampled in southeastern Brazil. Microb Ecol 2016; 71:505–517 [View Article]
    [Google Scholar]
  2. Vannini C, Petroni G, Schena A, Verni F, Rosati G. Well-established mutualistic associations between ciliates and prokaryotes might be more widespread and diversified than so far supposed. Eur J Protistol 2003; 39:481–485 [View Article]
    [Google Scholar]
  3. Fokin SI. Bacterial endocytobionts of Ciliophora and their interactions with the host cell. Int Rev Cytol 2004; 236:181–249 [View Article]
    [Google Scholar]
  4. Fokin SI. Frequency and biodiversity of symbionts in representatives of the main classes of Ciliophora. Eur J Protistol 2012; 48:138–148 [View Article]
    [Google Scholar]
  5. Gast RJ, Sanders RW, Caron DA. Ecological strategies of protists and their symbiotic relationships with prokaryotic microbes. Trends Microbiol 2009; 17:563–569 [View Article]
    [Google Scholar]
  6. Heinz E, Kolarov I, Kästner C, Toenshoff ER, Wagner M et al. An Acanthamoeba sp. containing two phylogenetically different bacterial endosymbionts. Environ Microbiol 2007; 9:1604–1609 [View Article]
    [Google Scholar]
  7. Gong J, Qing Y, Guo X, Warren A. "Candidatus Sonnebornia yantaiensis", a member of candidate division OD1, as intracellular bacteria of the ciliated protist Paramecium bursaria (Ciliophora, Oligohymenophorea). Syst Appl Microbiol 2014; 37:35–41 [View Article]
    [Google Scholar]
  8. Kuykendall LD. Order XII. Rhizobiales ord. nov.. In Brenner DJ, Krieg NR, Staley JT, Garrity GM. (editors) Bergey’s Manual of Systematic Bacteriology. The Proteobacteria, part C, The Alpha-, Beta-, Delta-, and Epsilonproteobacteria 2, 2nd ed. New York: Springer; 2005 pp 324–.574
    [Google Scholar]
  9. Fokin SI, Schweikert M, Brümmer F, Görtz HD. Spirostomum spp. (Ciliophora, Protista), a suitable system for endocytobiosis research. Protoplasma 2005; 225:93–102 [View Article]
    [Google Scholar]
  10. Foissner W, Berger H, Kohmann F. Taxonomische Und Ökologische Revision Der Ciliaten Des Saprobiensystems. Band Ii: Peritrichia, Heterotrichida, Odontostomatida Taxonomische und Ökologische Revision der Ciliaten des Saprobiensystems. Band II: Peritrichia, Heterotrichida, Odontostomatida Informationsberichte des Bayer, Landesamentes fur Wasserwirtschaft; 1992 pp 317–337
    [Google Scholar]
  11. Soldo AT. Cultivation of two strains of killer Paramecium aurelia in axenic medium. Exp Biol Med 1960; 105:612–615 [View Article]
    [Google Scholar]
  12. Soldo AT, Godoy GA, Van Wagtendonk WJ. Growth of particle-bearing and particle-free Paramecium aurelia in axenic culture*. J Protozool 1966; 13:492–497 [View Article]
    [Google Scholar]
  13. Barna I, Weis DS. The utilization of bacteria as food for Paramecium bursaria . Trans Am Microsc Soc 1973; 92:434–440 [View Article]
    [Google Scholar]
  14. Weis DS. A medium for the axenic culture of Chlorella-bearing Paramecium bursaria in the light. Trans Am Microsc Soc 1975; 94:109–117 [View Article]
    [Google Scholar]
  15. Soldo AT, Merlin EJ. The cultivation of symbiote-free marine ciliates in axenic medium. J Protozool 1972; 19:519–524 [View Article]
    [Google Scholar]
  16. Vannini C, Rosati G, Verni F, Petroni G. Identification of the bacterial endosymbionts of the marine ciliate Euplotes magnicirratus (Ciliophora, Hypotrichia) and proposal of 'Candidatus Devosia euplotis'. Int J Syst Evol Microbiol 2004; 54:1151–1156 [View Article]
    [Google Scholar]
  17. MacFaddin JF. Biochemical Tests for the Identification of Medical Bacteria Baltimore, MD: Williams and Wilkins Company; 1972
    [Google Scholar]
  18. Kumar BS, Prabhakaran G. Production of PHB (bioplastics) using bio-effluent as substrate by Alcaligens eutrophus . Indian J Biotechnol 2006; 5:76–79
    [Google Scholar]
  19. Kovacs N. Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 1956; 178:703 [View Article]
    [Google Scholar]
  20. Isenberg HD. Clinical Microbiology Procedures Handbook Washington, DC: American Society for Microbiology; 1992
    [Google Scholar]
  21. Koneman EW, Allen SD, Janda WM, Schrecberger PC, Winn WC et al. Color Atlas and Textbook of Diagnostic Microbiology, 4th ed. Philadelphia: J. B. Lippincott Company; 1992
    [Google Scholar]
  22. Cowan ST, Steel KJ. Cowan and Steel's Manual for the Identification of Medical Bacteria, 3rd ed. Cambridge: Cambridge University Press; 1993
    [Google Scholar]
  23. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp 607–654
    [Google Scholar]
  24. Hugh R, Leifson E. The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various Gram-negative bacteria. J Bacteriol 1953; 66:24–26
    [Google Scholar]
  25. Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 1966; 45:493–496 [View Article]
    [Google Scholar]
  26. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics Chichester: Wiley; 1991 pp 115–175
    [Google Scholar]
  27. Gaunt MW, Turner SL, Rigottier-Gois L, Lloyd-Macgilp SA, Young JP. Phylogenies of atpD and recA support the small subunit rRNA-based classification of rhizobia. Int J Syst Evol Microbiol 2001; 51:2037–2048 [View Article]
    [Google Scholar]
  28. Edgcomb VP, Leadbetter ER, Bourland W, Beaudoin D, Bernhard JM. Structured multiple endosymbiosis of bacteria and archaea in a ciliate from marine sulfidic sediments: a survival mechanism in low oxygen, sulfidic sediments?. Front Microbiol 2011; 2:55 [View Article]
    [Google Scholar]
  29. Yoon SH, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article]
    [Google Scholar]
  30. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article]
    [Google Scholar]
  31. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article]
    [Google Scholar]
  32. Edwards AWF, Cavalli-Sforza LL. The reconstruction of evolution. Ann. Hum. Genet.226 (Lond.) 27, 105; and Heredity 1963; 18:553
    [Google Scholar]
  33. Kluge AG, Farris JS. Quantitative phyletics and the evolution of anurans. Syst Zool 1969; 18:1–32 [View Article]
    [Google Scholar]
  34. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 2010; 59:307–321 [View Article]
    [Google Scholar]
  35. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 2012; 61:539–542 [View Article]
    [Google Scholar]
  36. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article]
    [Google Scholar]
  37. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article]
    [Google Scholar]
  38. Ludwig W, Strunk O, Klugbauer S, Klugbauer N, Weizenegger M et al. Bacterial phylogeny based on comparative sequence analysis. Electrophoresis 1998; 19:554–568 [View Article]
    [Google Scholar]
  39. Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article]
    [Google Scholar]
  40. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article]
    [Google Scholar]
  41. Tamaoka J, Komagata K. Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 1984; 25:125–128 [View Article]
    [Google Scholar]
  42. Kämpfer P, Wohlgemuth S, Scholz H. The Family Brucellaceae . In Rosenberg E, DeLong EF, Lory S, Stackebrandt E. (editors) The Prokaryotes – Alphaproteobacteria and Betaproteobacteria Verlag Berlin Heidelberg: Springer; 2014 pp 155–178
    [Google Scholar]
  43. Alves LMC, Marcondes de Souza JA, Varani AM, Lemos EGM. The Family Rhizobiaceae . In Rosenberg E, DeLong EF, Lory S, Stackebrandt E. (editors) The Prokaryotes – Alphaproteobacteria and Betaproteobacteria Verlag Berlin Heidelberg: Springer; 2014 pp 20–437
    [Google Scholar]
  44. Willems A. The Family Phyllobacteriaceae . In Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F. (editors) The Prokaryotes – Alphaproteobacteria and Betaproteobacteria Verlag Berlin Heidelberg: Springer; 2014 pp 355–418
    [Google Scholar]
  45. Jin L, Kim KK, Lee HG, Ahn CY, Oh HM et al. Kaistia defluvii sp. nov., isolated from river sediment. Int J Syst Evol Microbiol 2012; 62:2878–2882 [View Article]
    [Google Scholar]
  46. Oren A, In Rosenberg E, DeLong EF, Lory S, Stackebrandt E et al. The Family Xanthobacteraceae . In Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F et al. (editors) The Prokaryotes – Alphaproteobacteria and Betaproteobacteria Verlag Berlin Heidelberg: Springer; 2014 pp 710–726
    [Google Scholar]
  47. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article]
    [Google Scholar]
  48. Moore L, Moore E, Murray R, Stackebrandt E, Starr M. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987; 37:463–464
    [Google Scholar]
  49. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE, USA: MIDI; 2001
    [Google Scholar]
  50. Tamaoka J, Katayama-Fujimura Y, Kuraishi H. Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J Appl Microbiol 1983; 54:31–36 [View Article]
    [Google Scholar]
  51. Padakandla SR, Lee G-W, Chae J-C. Paenibacillus gelatinilyticus sp. nov. a psychrotolerant bacterium isolated from a reclaimed soil and amended description of Paenibacillus shenyangensis . Antonie van Leeuwenhoek 2015; 108:1197–1203 [View Article]
    [Google Scholar]
  52. Liu X-M, Chen K, Meng C, Zhang L, Zhu JC et al. Pseudoxanthobacter liyangensis sp. nov., isolated from dichlorodiphenyltrichloroethane-contaminated soil. Int J Syst Evol Microbiol 2014; 64:3390–3394 [View Article]
    [Google Scholar]
  53. Kämpfer P, Young C-C, Arun AB, Shen F-T, Jäckel U et al. Pseudolabrys taiwanensis gen. nov., sp. nov., an alphaproteobacterium isolated from soil. Int J Syst Evol Microbiol 2006; 56:2469–2472 [View Article]
    [Google Scholar]
  54. Li L, Li YQ, Jiang Z, Gao R, Nimaichand S et al. Ochrobactrum endophyticum sp. nov., isolated from roots of Glycyrrhiza uralensis . Arch Microbiol 2016; 198:171–179 [View Article]
    [Google Scholar]
  55. Glaeser SP, Galatis H, Martin K, Kämpfer P. Kaistia hirudinis sp. nov., isolated from the skin of Hirudo verbana . Int J Syst Evol Microbiol 2013; 63:3209–3213 [View Article]
    [Google Scholar]
  56. Arun AB, Schumann P, Chu HI, Tan CC, Chen WM et al. Pseudoxanthobacter soli gen. nov., sp. nov., a nitrogen-fixing alphaproteobacterium isolated from soil. Int J Syst Evol Microbiol 2008; 58:1571–1575 [View Article]
    [Google Scholar]
  57. Im WT, Yokota A, Kim MK, Lee ST. Kaistia adipata gen. nov., sp. nov., a novel alpha-proteobacterium. J Gen Appl Microbiol 2004; 50:249–254 [View Article]
    [Google Scholar]
  58. Holmes B, Popoff M, Kiredjian M, Kersters K. Ochrobactrum anthropi gen. nov., sp. nov. from human clinical specimens and previously known as group Vd. Int J Syst Bacteriol 1988; 38:406–416 [View Article]
    [Google Scholar]
  59. Zurdo-Piñeiro JL, Rivas R, Trujillo ME, Vizcaíno N, Carrasco JA et al. Ochrobactrum cytisi sp. nov., isolated from nodules of Cytisus scoparius in Spain. Int J Syst Evol Microbiol 2007; 57:784–788 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003907
Loading
/content/journal/ijsem/10.1099/ijsem.0.003907
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error